函數(shù)
(1)設(shè)函數(shù),若方程上有且僅一個實根,求實數(shù) 的取值范圍;
(2)當時,求函數(shù)上的最大值.

(1)實數(shù) 的取值范圍
(2)當時,,當時,

解析試題分析:(1)由二次方程上有且僅一個實根,說明且根在上或一根在上一根不在上兩種情況,由以上情況列出相應(yīng)關(guān)系式求實數(shù)
(2)當時,上是分段函數(shù),分段函數(shù)的最值,應(yīng)先求出函數(shù)在各部分的最值,然后取各部分的最值的最大值為整個函數(shù)的最大值.
試題解析:
(1)方程上有且僅一個實根
即方程上有且僅一個實根               2分
Ⅰ當方程上有兩個相等實根
此時無解;                       4分
Ⅱ當方程一根在上一根不在上分兩類情況
①在上有且僅一個實根,則 
                                  6分
②當時,此時方程
符合題意
綜上所述,實數(shù) 的取值范圍                                8分
(2)Ⅰ當時,
∴當時,                               10分
Ⅱ當時,
∵函數(shù)上單調(diào)遞增
                                   12分

∴當時,,當時,.    14分
考點:二次方程的實根分布,分段函數(shù)求最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/99/3/t3b2c1.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時有最大值2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(Ⅰ)解不等式
(Ⅱ)設(shè)集合,集合,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當,且時,求證: 
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,且同時滿足以下三個條件:①;②對任意的,都有;③當時總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

新晨投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不低于萬元,同時不超過投資收益的.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學語言表述公司對獎勵方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個獎勵方案的函數(shù)模型:
;    ②
試分別分析這兩個函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

同步練習冊答案