如圖,在梯形ABCD中,已知ADBC, AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.

(1)求證:ABE≌△CDA;

(2)若DAC=40°,求EAC的度數(shù).

 

 

(1)證明見解析;(2)100°.

【解析】

試題分析:(1)先根據(jù)題意得出∠ABE=∠CDA,然后結(jié)合題意條件利用SAS可判斷三角形的全等;

(2)根據(jù)題意可分別求出∠AEC及∠ACE的度數(shù),在△AEC中利用三角形的內(nèi)角和定理即可得出答案.

(1)證明:在梯形ABCD中,∵AD∥BC,AB=CD,

∴∠ABE=∠BAD,∠BAD=∠CDA,

∴∠ABE=∠CDA

在△ABE和△CDA中,

,

∴△ABE≌△CDA.

(2)【解析】
由(1)得:∠AEB=∠CAD,AE=AC,

∴∠AEB=∠ACE,

∵∠DAC=40°,

∴∠AEB=∠ACE=40°,

∴∠EAC=180°-40°-40°=100°.

考點: 1.梯形;2.全等三角形的判定與性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省江陰市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

平面直角坐標(biāo)系中,四邊形ABCD的頂點坐標(biāo)分別是A(3,0)、B(0,2)C(3,0)、D(0,2),則四邊形ABCD ( )

A.矩形 B.菱形 C.正方形 D.梯形

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省昆山市九年級下學(xué)期教學(xué)質(zhì)量調(diào)研(二模)數(shù)學(xué)試卷(解析版) 題型:解答題

已知不等式組:

(1)求此不等式組的整數(shù)解;

(2)若上述整數(shù)解滿足方程ax+6=x-2a,求a的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省昆山市九年級下學(xué)期教學(xué)質(zhì)量調(diào)研(二模)數(shù)學(xué)試卷(解析版) 題型:選擇題

若反比例函數(shù)y=的圖象經(jīng)過點(m,3m),其中m≠0,則此反比例函數(shù)的圖象在

A.第一、二象限 B.第一、三象限

C.第二、四象限 D.第三、四象限

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級二模數(shù)學(xué)試卷(解析版) 題型:解答題

為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.

(1)甲、乙兩種套房每套提升費用各多少萬元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?

(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級二模數(shù)學(xué)試卷(解析版) 題型:填空題

一幾何體的三視圖如圖所示,其中正視圖與左視圖是兩個全等的等腰三角形,俯視圖是圓,則該幾何體的側(cè)面積為

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級二模數(shù)學(xué)試卷(解析版) 題型:選擇題

一次函數(shù)的圖象如圖所示,則不等式:的解集為 ( )

A.     B.     C.     D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市錫山區(qū)九年級下學(xué)期期中考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題

(1) 解方程:1;

(2) 解不等式組:

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市錫北片九年級4月中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,A是反比例函數(shù)圖象上一點,過點A作ABy軸于點B,點P在x軸上,ABP的面積為2,則k的值為(

A.1 B.2 C.3 D.4

 

查看答案和解析>>

同步練習(xí)冊答案