【題目】如圖:在ABC中,∠ACB=90°,AC=BC,PCQ=45°,把∠PCQ繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過程中,過點(diǎn)AADCP,垂足為D,直線ADCQE

1)如圖①,當(dāng)∠PCQ在∠ACB內(nèi)部時(shí),求證:AD+BE=DE;

2)如圖②,當(dāng)CQ在∠ACB外部時(shí),則線段AD、BEDE的關(guān)系為_____;

3)在(1)的條件下,若CD=6,SBCE=2SACD,求AE的長(zhǎng).

【答案】(1)見解析 (2)AD=BE+DE 38

【解析】試題分析:(1)延長(zhǎng)DAF,使DF=DE,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得CE=CF,再求出∠ACF=BCE然后利用邊角邊證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得證;

2)在AD上截取DF=DE,然后根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得CE=CF,再求出∠ACF=BCE然后利用邊角邊證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得到AD=BE+DE;

3)根據(jù)等腰直角三角形的性質(zhì)求出CD=DF=DE,再根據(jù)等高的三角形的面積的比等于底邊的比求出AF=2AD,然后求出AD的長(zhǎng)再根據(jù)AE=AD+DE代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.

試題解析:(1)證明如圖①,延長(zhǎng)DAF,使DF=DECDAE,CE=CF,∴∠DCE=DCF=PCQ=45°,∴∠ACD+∠ACF=DCF=45°.又∵∠ACB=90°,PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=BCE.在△ACF和△BCE,,∴△ACF≌△BCESAS),AF=BEAD+BE=AD+AF=DF=DE,AD+BE=DE;

2)解如圖②,AD上截取DF=DECDAE,CE=CF∴∠DCE=DCF=PCQ=45°,∴∠ECF=DCE+∠DCF=90°,∴∠BCE+∠BCF=ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=BCE在△ACF和△BCE,∴△ACF≌△BCESAS),AF=BEAD=AF+DF=BE+DEAD=BE+DE;

故答案為:AD=BE+DE

3∵∠DCE=DCF=PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,CD=DF=DE=6SBCE=2SACDAF=2AD,AD=×6=2AE=AD+DE=2+6=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一病人發(fā)高燒進(jìn)醫(yī)院進(jìn)行治療,醫(yī)生給他開了藥并掛了水,同時(shí)護(hù)士每隔1小時(shí)對(duì)病人測(cè)體溫,及時(shí)了解病人的好轉(zhuǎn)情況,現(xiàn)護(hù)士對(duì)病人測(cè)體溫的變化數(shù)據(jù)如下表:

時(shí) 間

700

800

900

1000

1100

1200

1300

1400

1500

體溫(與前一次比較)

0.2

1.0

0.8

1.0

0.6

0.4

0.2

0.2

0

注:病人早晨進(jìn)院時(shí)醫(yī)生測(cè)得病人體溫是40.2℃

問:(1)病人什么時(shí)候體溫達(dá)到最高,最高體溫是多少?

2)病人中午12點(diǎn)時(shí)體溫多高?

3)病人幾點(diǎn)后體溫穩(wěn)定正常?(正常體溫是37℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律:將連續(xù)的偶數(shù)2,46,8,排成如表:

1)十字框中的五個(gè)數(shù)的和與中間的數(shù)16有什么關(guān)系?

2)移動(dòng)十字框,設(shè)中間的數(shù)為x,用代數(shù)式表示十字框中的五個(gè)數(shù)的和;

3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),其它五個(gè)數(shù)的和能等于2560嗎?若能,寫出這五個(gè)數(shù),若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長(zhǎng)為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是( 。

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動(dòng)員甲測(cè)試成績(jī)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

7

5

8

7

8

7

1)寫出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);

2)在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?(參考數(shù)據(jù):三人成績(jī)的方差分別為、、)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形紙片.點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn)分別落在點(diǎn)處,

(1)若,則的度數(shù)為 °;

(2)若,的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)軸上,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),沿直線以每秒鐘個(gè)單位長(zhǎng)度的速度來回移動(dòng),其移動(dòng)方式是先向右移動(dòng)個(gè)單位長(zhǎng)度,再向左移動(dòng)個(gè)單位長(zhǎng)度,又向右移動(dòng)個(gè)單位長(zhǎng)度,再向左移動(dòng)個(gè)單位長(zhǎng)度,又向右移動(dòng)個(gè)單位長(zhǎng)度

1)求出秒鐘后動(dòng)點(diǎn)所處的位置;

2)如果在數(shù)軸上還有一個(gè)定點(diǎn),且與原點(diǎn)相距20個(gè)單位長(zhǎng)度,問:動(dòng)點(diǎn)從原點(diǎn)出發(fā),可能與點(diǎn)重合嗎?若能,則第一次與點(diǎn)重合需多長(zhǎng)時(shí)間?若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定x的一元一次方程axb的解為ba,則稱該方程是差解方程,例如:3x4.5的解為4.531.5,則該方程3x4.5就是差解方程,請(qǐng)根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程4xm差解方程,則m______.

(2)已知關(guān)于x的一元一次方程4xab+a差解方程,它的解為a,則a+b_____.

(3)已知關(guān)于x的一元一次方程4xmn+m和﹣2xmn+n都是差解方程,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2m][(mn+n)22n]的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A,B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.

【試題再現(xiàn)】如圖②,在△ABC中,∠ACB=90°,直角頂點(diǎn)C在直線DE上,分別過點(diǎn)A,B作AD⊥DE于點(diǎn)D,BE⊥DE于點(diǎn)E.求證:△ADC∽△CEB.

【問題探究】在圖①中,若∠A=∠B=∠DEC=40°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由.

【深入探究】如圖③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于點(diǎn)P,過點(diǎn)P作AB⊥AD于點(diǎn)A,交BC于點(diǎn)B.

(1)請(qǐng)證明點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn).

(2)若AD=3,BC=5,試求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案