如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O與點D,過點D的切線分別交AB、AC的延長線與點E、F.
(1)求證:AF⊥EF.
(2)小強同學(xué)通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強同學(xué)證明這一結(jié)論.
證明:(1)連接OD,
∵EF是⊙O的切線,
∴OD⊥EF,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
CD
=
BD
,
∴OD⊥BC,
∴BCEF,
∵AB為直徑,
∴∠ACB=90°,
即AC⊥BC,
∴AF⊥EF;

(2)連接BD并延長,交AF的延長線于點H,連接CD,
∵AB是直徑,
∴∠ADB=90°,
即AD⊥BH,
∴∠ADB=∠ADH=90°,
在△ABD和△ADH中,
∠HAD=∠BAD
AD=AD
∠ADH=∠ADB

∴△ABD≌△AHD(ASA),
∴AH=AB,
∵EF是切線,
∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
∴∠CDF=∠HDF,
∵DF⊥AF,DF是公共邊,
∴△CDF≌△HDF(ASA),
∴FH=CF,
∴AF+CF=AF+FH=AH=AB.
即AF+CF=AB,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=AC,∠C=72°,⊙O過AB兩點且與BC切于B,與AC交于D,連接BD,若BC=
5
-1,則AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,點A、B為切點,AC是⊙O的直徑,∠BAC=20°,則∠P的大小是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,BD是半圓O的直徑,A是BD延長線上的一點,BC⊥AE,交AE的延長線于點C,交半圓O于點E,且E為
DF
的中點.
(1)求證:AC是半圓O的切線;
(2)若AD=6,AE=6
2
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.點D在AB邊上,點E是BC邊上一點(不與點B、C重合),且DA=DE,則AD的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點C,AD⊥EF,垂足為D.
(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動,如圖②,EF交⊙O于G、C兩點,若題中的其它條件不變,猜想:此時與∠DAC相等的角是哪一個?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形ABCD的邊長為2,點P是BC上的一點,將△DCP沿DP折疊至△DPQ,若DQ,DP恰好與如圖所示的以正方形ABCD的中心O為圓心的⊙O相切,則折痕DP的長為(  )
A.
2
3
3
B.
4
3
3
C.
2
3
5
D.
4
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦CD⊥AB于E,弦CD、AF相交于點G,過點D作⊙O的切線交AF的延長線于M,且
AC
=
CBF

(1)在圖中找出相等的線段(直接在橫線上填寫,所寫結(jié)論至少3組,所添輔助線段除外,不需寫推理過程)______;
(2)連接AD,DF(請將圖形補充完整),若AO=
4
5
15
,OE=
1
5
15
,求AD:DF的值;
(3)在滿足(1)、(2)的前提下,求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,△ABC內(nèi)接于⊙O1,AB=AC,⊙O2與BC相切于點B,與AB相交于點E,與⊙O1相交于點D,直線AD交⊙O2于點F,交CB的延長線于點G.
求證:(1)∠G=∠AFE;(2)AB•EB=DE•AG.

查看答案和解析>>

同步練習(xí)冊答案