20.如圖,已知反比例函數(shù)y=$\frac{2}{x}$的圖象與正比例函數(shù)y=kx的圖象交于點A(m,-2),
(1)求正比例函數(shù)的解析式及兩函數(shù)圖象另一個交點B的坐標;
(2)試根據(jù)圖象寫出不等式$\frac{2}{x}$≥kx的解集.

分析 (1)只需把已知的交點的坐標代入解析式,即可求解,根據(jù)對稱的性質,求得另一個交點的坐標;
(2)根據(jù)圖象即可得到不等式$\frac{2}{x}$≥kx的解集是x≤-1或0<x≤1.

解答 解:(1)∵點A(m,-2)過反比例函數(shù)y=$\frac{2}{x}$的圖象,
則有-2=$\frac{2}{m}$,
∴m=-1.
又∵正比例函數(shù)y=kx,
∴-2=-k,
∴k=2.
另一個交點和點A關于原點對稱,
∴B坐標為(1,2).
∴正比例函數(shù)解析式為y=2x,另一個交點的坐標為(1,2);
(2)根據(jù)圖象得:不等式$\frac{2}{x}$≥kx的解集是x≤-1或0<x≤1.

點評 本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法確定m,k的值,并且用到了過原點的直線與反比例函數(shù)圖象的兩個交點坐標關于原點對稱的知識.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

11.已知$\frac{1}-\frac{1}{a}=4$,求分式$\frac{2a+ab-2b}{a-2ab-b}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.方程組$\left\{\begin{array}{l}{x=2y+1}\\{2x-y=11}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=7}\\{y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.某餐廳中1張餐桌可坐6人,有以下兩種擺放方式:

(1)對于第一種方式,4張桌子拼在一起可坐多少人?n張桌子拼在一起可坐多少人?
(2)該餐廳有40張這樣的長方形桌子,按第二種方式每4張拼成一張大桌子,則40張桌子可拼成10張大桌子,共可坐多少人?
(3)一天中午,該餐廳來了120位顧客共同就餐,但餐廳中只有28張這樣的長方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺餐桌呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.如圖,矩形ABCD沿折痕OG折疊,使點B落在B′,點C落在點C′,∠AOB′=70°,則∠OGC=125°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.某超市準備購進A、B兩種品牌臺燈,其中A品牌臺燈每盞進價比B品牌臺燈每盞進價貴30元,A品牌臺燈每盞售價120元,B品牌臺燈每盞售價80元.已知,用1040元購進的A品牌臺燈的數(shù)量與用650元購進的B品牌臺燈數(shù)量相同.
(1)求A、B兩種品牌臺燈的進價分別是多少元?
(2)該超市打算購進A、B兩種品牌臺燈共100盞,同時要求A、B兩種品牌臺燈的總利潤不得少于3400元,不得多于3550元,問該超市有幾種進貨方案?
(3)在(2)的所有進貨方案中,該超市決定對A品牌臺燈進行降價促銷,A品牌臺燈每盞降價m(8?m?15)元,B品牌臺燈售價不變,那么該超市如何進貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖1,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.
(1)數(shù)軸上點A表示的數(shù)為4.
(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為O′A′B′C′,移動后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.
①當S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A′表示的數(shù)為6或2.
②設點A的移動距離AA′=x.
。擲=4時,x=$\frac{8}{3}$;
ⅱ.D為線段AA′的中點,點E在線段OO′上,且OE=$\frac{1}{3}$OO′,當點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.(1)計算:|-3|+($\sqrt{2014}$-π)0-($\frac{1}{3}$)-1-$\sqrt{3}$cos30°
(2)先化簡再求值:($\frac{x+1}{{x}^{2}-4}$-$\frac{2}{x+2}$)÷$\frac{x-5}{x+2}$,其中x=$\sqrt{2}$+2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.上操坪有54人,下操坪有48人,現(xiàn)從下操坪調(diào)往上操坪x人后,上操坪人數(shù)剛好是下操坪的2倍,根據(jù)這一問題可列方程( 。
A.54-x=2×48B.48+x=2(54-x)C.54+x=2(48-x)D.48+x=2×54

查看答案和解析>>

同步練習冊答案