如圖,在平面直角坐標系中,O為坐標原點,拋物線與x軸相交于O、B,頂點為A,連接OA.
(1)求點A的坐標和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線上,請說明理由;
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
(1)點A的坐標為(﹣2,﹣2),∠AOB=45°。
(2)四邊形ACOC′為菱形。理由見解析
(3)點C′不在拋物線上。理由見解析
(4)存在符合條件的點Q。點Q的坐標為(6,4)。
【解析】
試題分析:(1)由得,y=(x﹣2)2﹣2,故可得出拋物線的頂點A的坐標,過點A作AD⊥x軸,垂足為D,由∠ADO=90°可知點D的坐標,故可得出OD=AD,由此即可得出結論。
∵由得,y=(x﹣2)2﹣2,
∴拋物線的頂點A的坐標為(﹣2,﹣2)。
如圖1,過點A作AD⊥x軸,垂足為D,∴∠ADO=90°。
∵點A的坐標為(﹣2,﹣2),點D的坐標為(﹣2,0),
∴OD=AD=2!唷螦OB=45°。
(2)由題意可知拋物線m的二次項系數(shù)為,由此可得拋物線m的解析式過點C作CE⊥x軸,垂足為E;過點A作AF⊥CE,垂足為F,與y軸交與點H,根據(jù)勾股定理可求出OC的長,同理可得AC的長,OC=AC,
由翻折的軸對稱性的性質可知,OC=AC=OC′=AC′,由此即可得出結論。
四邊形ACOC′為菱形。理由如下:
由題意可知拋物線m的二次項系數(shù)為,且過頂點C的坐標是(2,﹣4),
∴拋物線m的解析式為:y=(x﹣2)2﹣4,即y=x2﹣2x﹣2。
如圖,過點C作CE⊥x軸,垂足為E;過點A作AF⊥CE,垂足為F,與y軸交與點H,
∴OE=2,CE=4,AF=4,CF=CE﹣EF=2。
∴。
同理,AC=。
∴OC=AC。
由翻折的軸對稱性的性質可知,OC=AC=OC′=AC′,
∴四邊形ACOC′為菱形。
(3)過點C′作C′G⊥x軸,垂足為G,由于OC和OC′關于OA對稱,∠AOB=∠AOH=45°,故可得出∠COH=∠C′OG,再根據(jù)CE∥OH可知∠OCE=∠C′OG,根據(jù)全等三角形的判定定理可知△CEO≌△C′GO,故可得出點C′的坐標把x=﹣4代入拋物線進行檢驗即可得出結論。
點C′不在拋物線上。理由如下:
如圖,過點C′作C′G⊥x軸,垂足為G,
∵OC和OC′關于OA對稱,∠AOB=∠AOH=45°,∴∠COH=∠C′OG。
∵CE∥OH,∴∠OCE=∠C′OG。
又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO!郞G=4,C′G=2。
∴點C′的坐標為(﹣4,2)。
把x=﹣4代入拋物線得y=0。
∴點C′不在拋物線上。
(4)∵點P為x軸上的一個動點,點Q在拋物線m上,
∴設Q(a,)。
∵OC為該四邊形的一條邊,∴OP為對角線。
∴CQ的中點在x上。
∵C的坐標是(2,﹣4),
∴,解得a1=6,a 2=﹣2。
∴Q(6,4)或(﹣2,4)(Q、O、C在一直線上,舍去)。
∴點Q的坐標為(6,4)。
科目:初中數(shù)學 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com