【題目】如圖,DE是△ABC的中位線,F是DE的中點,CF的延長線交AB于點G,若△CEF的面積為18cm2,則S△DGF等于( )
A.4cm2B.5cm2C.6cm2D.7 cm2
【答案】C
【解析】
取CG的中點H,連接EH,根據(jù)三角形的中位線定理可得EH∥AD,所以∠GDF=∠HEF,然后利用“角邊角”證明△DFG和△EFH全等,所以FG=FH,S△EFH=S△DGF,易求出FC=3FH,再根據(jù)等高的三角形的面積比等于底邊的比求出S△EFH,從而得解.
解:如圖,取CG的中點H,連接EH,
∵E是AC的中點,
∴EH是△ACG的中位線,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中點,
∴DF=EF,
在△DFG和△EFH中,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF ,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
∴S△CEF=3S△EFH,
∴S△CEF=3S△DGF,
∴S△DGF=×18=6(cm2).
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題:
如圖一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想線段AD與DC數(shù)量關系.小明發(fā)現(xiàn)可以用下面方法解決問題:作DE⊥BC交BC于點E:
(1)根據(jù)閱讀材料可得AD與DC的數(shù)量關系為__________.
(2)如圖二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想線段AD與DC的數(shù)量關系,并證明你的猜想.
(3)如圖三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想線段AD與BD、BC的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點P從點B出發(fā),以每秒1個單位的速度,沿BA向點A移動;同時點Q從點C出發(fā),以每秒2個單位的速度,沿CB向點B移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤2),解答下列問題:
(1)當x為何值時,PQ⊥DQ;
(2)設△QPD的面積為S,用含x的函數(shù)關系式表示S;當x為何值時,S有最小值?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將DE繞點D按逆時針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】日歷上的規(guī)律:表格是2020年元月的日歷,圖中的陰影區(qū)域是在日歷中選取的一塊九宮格.
(1)九宮格中,四個角的四個數(shù)之和與九宮格中央那個數(shù)有什么關系?
(2)請你自選一塊九宮格進行計算,看四個角上的四個數(shù)之和與九宮格中央那個數(shù)是否還有這種關系?
(3)試說明原理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:當點C在線段AB上,AC=nAB時,我們稱n為點C在線段AB上的點值,記作dC﹣AB=n.如點C是AB的中點時,即AC=AB,則dC﹣AB=;反過來,當dC﹣AB=時,則有AC=AB.
(1)如圖1,點C在線段AB上,若dC﹣AB=,則= ;若AC=3BC,則dC﹣AB= ;
(2)如圖2,在△ABC中,∠ACB=90°,CD⊥AB于點D,AB=10cm,BC=6cm,點P、Q分別從點C和點B同時出發(fā),點P沿線段CA以2cm/s的速度向點A運動,點Q沿線段BC以1cm/s的速度向點C運動,當點P到達點A時,點P、Q均停止運動,連接PQ交CD于點E,設運動時間為ts,dP﹣CA+dQ﹣CB=m.
①當≤m≤時,求t的取值范圍;
②當dP﹣CA=,求dE﹣CD的值;
③當dE﹣CD=時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】童星玩具廠工人的工作時間為:每月22天,每天8小時.工資待遇為:按件計酬,多勞多得,每月另加福利工資500元,按月結(jié)算.該廠生產(chǎn)A、B兩種產(chǎn)品,工人每生產(chǎn)一件A種產(chǎn)品可得報酬1.50元,每生產(chǎn)一件B種產(chǎn)品可得報酬2.80元.該廠工人可以選擇A、B兩種產(chǎn)品中的一種或兩種進行生產(chǎn).工人小李生產(chǎn)1件A產(chǎn)品和1件B產(chǎn)品需35分鐘;生產(chǎn)3件A產(chǎn)品和2件B產(chǎn)品需85分鐘.
(1)小李生產(chǎn)1件A產(chǎn)品需要 分鐘,生產(chǎn)1件B產(chǎn)品需要 分鐘.
(2)求小李每月的工資收入范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上有、、、四個點,分別對應,,,四個數(shù),其中,,與互為相反數(shù),
(1)求,的值;
(2)若線段以每秒3個單位的速度,向右勻速運動,當_______時,點與點重合,當_______時,點與點重合;
(3)若線段以每秒3個單位的速度向右勻速運動的同時,線段以每秒2個單位的速度向左勻速運動,則線段從開始運動到完全通過所需時間多少秒?
(4)在(3)的條件下,當點運動到點的右側(cè)時,是否存在時間,使點與點的距離是點與點的距離的4倍?若存在,請求出值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com