如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
(1)證明:∵直角△ABC中,∠C=90°﹣∠A=30°.
∴AB=AC=×60=30cm.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=CD=2t,
∴DF=AE;
解:(2)∵DF∥AB,DF=AE,
∴四邊形AEFD是平行四邊形,
當(dāng)AD=AE時(shí),四邊形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即當(dāng)t=10時(shí),▱AEFD是菱形;
(3)當(dāng)t=時(shí)△DEF是直角三角形(∠EDF=90°);當(dāng)t=12時(shí),△DEF是直角三角形(∠DEF=90°).理由如下:
當(dāng)∠EDF=90°時(shí),DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
即60﹣4t=4t
解得:t=
∴t=時(shí),∠EDF=90°.
當(dāng)∠DEF=90°時(shí),DE⊥EF,
∵四邊形AEFD是平行四邊形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=AE,
AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,
∴60﹣4t=t,
解得t=12.
綜上所述,當(dāng)t=時(shí)△DEF是直角三角形(∠EDF=90°);當(dāng)t=12時(shí),△DEF是直角三角形(∠DEF=90°)
∴小麗駕車從甲地到乙地共耗油:33.5×=3.35升.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,將長方形紙片沿對角線折疊,使點(diǎn)落在處,
交AD于E,若,則在不添加任何輔助線的情況下,
則圖中的角(虛線也視為角的邊)的個(gè)數(shù)是( )
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列事件中,哪些是確定事件?哪些是不確定事件?
(1)任意擲一枚質(zhì)地均勻的骰子,朝上的點(diǎn)數(shù)是6.
(2)在一個(gè)平面內(nèi),三角形三個(gè)內(nèi)角的和是190度.
(3)線段垂直平分線上的點(diǎn)到線段兩端的距離相等.
(4)打開電視機(jī),它正在播動(dòng)畫片.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在某火車站托運(yùn)物品時(shí),不超過3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg計(jì))需增加托運(yùn)費(fèi)0.5元,則下列圖象能表示出托運(yùn)費(fèi)y與物品重量x之間的函數(shù)關(guān)系式的是( 。
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列調(diào)查中,適宜采用全面調(diào)查方式的是( ).
A. 調(diào)查春節(jié)聯(lián)歡晚會(huì)在北京地區(qū)的收視率
B. 了解全班同學(xué)參加社會(huì)實(shí)踐活動(dòng)的情況
C. 調(diào)查某品牌食品的蛋白質(zhì)含量
D. 了解一批手機(jī)電池的使用壽命
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com