分析 (1)過(guò)點(diǎn)C作CD垂直于x軸,由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC,根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)得到AB=AC,且∠BAC為直角,可得∠OAB與∠CAD互余,由∠AOB為直角,可得∠OAB與∠ABO互余,根據(jù)同角的余角相等可得一對(duì)角相等,再加上一對(duì)直角相等,利用ASA可證明三角形ACD與三角形AOB全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得AD=OB,CD=OA,由A和B的坐標(biāo)及位置特點(diǎn)求出OA及OB的長(zhǎng),可得出OD及CD的長(zhǎng),根據(jù)C在第四象限得出C的坐標(biāo);
(2)①由已知的拋物線經(jīng)過(guò)點(diǎn)C,把第一問(wèn)求出C的坐標(biāo)代入拋物線解析式,列出關(guān)于a的方程,求出方程的解得到a的值,確定出拋物線的解析式;
②假設(shè)存在點(diǎn)P使△ABP是以AB為直角邊的等腰直角三角形,分三種情況考慮:(i)A為直角頂點(diǎn),過(guò)A作AP1垂直于AB,且AP1=AB,過(guò)P1作P1M垂直于x軸,如圖所示,根據(jù)一對(duì)對(duì)頂角相等,一對(duì)直角相等,AB=AP1,利用AAS可證明三角形AP1M與三角形ACD全等,得出AP1與P1M的長(zhǎng),再由P1為第二象限的點(diǎn),得出此時(shí)P1的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(ii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP2垂直于BA,且BP2=BA,過(guò)P2作P2N垂直于y軸,如圖所示,同理證明三角形BP2N與三角形AOB全等,得出P2N與BN的長(zhǎng),由P2為第三象限的點(diǎn),寫(xiě)出P2的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(iii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP3垂直于BA,且BP3=BA,如圖所示,過(guò)P3作P3H垂直于y軸,同理可證明三角形P3BH全等于三角形AOB,可得出P3H與BH的長(zhǎng),由P3為第四象限的點(diǎn),寫(xiě)出P3的坐標(biāo),代入拋物線解析式檢驗(yàn),不滿足,綜上,得到所有滿足題意的P的坐標(biāo).
解答 解:(1)如圖1,過(guò)C作CD⊥x軸,垂足為D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,-2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C為第四象限的點(diǎn),
∴C的坐標(biāo)為(3,-1);
(2)①∵拋物線y=-$\frac{1}{2}$x2+ax+2經(jīng)過(guò)點(diǎn)C,且C(3,-1),
∴把C的坐標(biāo)代入得:-1=-$\frac{9}{2}$+3a+2,解得:a=$\frac{1}{2}$,
則拋物線的解析式為y=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2;
②存在點(diǎn)P,△ABP是以AB為直角邊的等腰直角三角形,
(i)若以AB為直角邊,點(diǎn)A為直角頂點(diǎn),
則延長(zhǎng)CA至點(diǎn)P1使得P1A=CA,得到等腰直角三角形ABP1,過(guò)點(diǎn)P1作P1M⊥x軸,如圖2所示,
∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(-1,1),經(jīng)檢驗(yàn)點(diǎn)P1在拋物線y=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2上;
(ii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,過(guò)點(diǎn)P2作P2N⊥y軸,如圖3,
同理可證△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(-2,-1),經(jīng)檢驗(yàn)P2(-2,-1)也在拋物線y=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2上;
(iii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,過(guò)點(diǎn)P3作P3H⊥y軸,如圖4,
同理可證△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,-3),經(jīng)檢驗(yàn)P3(2,-3)不在拋物線y=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2上;
則符合條件的點(diǎn)有P1(-1,1),P2(-2,-1)兩點(diǎn).
點(diǎn)評(píng) 此題屬于二次函數(shù)的綜合題,涉及的知識(shí)有:全等三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,以及等腰直角三角形的性質(zhì)等知識(shí).此題綜合性強(qiáng),難度較大,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想、方程思想與分類(lèi)討論思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x-5=x+1移項(xiàng),得3x-x=1-5 | B. | $\frac{x}{3}$+$\frac{x}{4}$=1去分母,得4x+3x=1 | ||
C. | 2(x-1)+4=x去括號(hào),得2x-2+4=x | D. | -5x=15的兩邊同除以-5,得x=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com