已知拋物線y=-x2+x+
(1)該拋物線的對稱軸是________,頂點坐標(biāo)________;
(2)不列表在右上圖的直角坐標(biāo)系內(nèi)描點畫出該拋物線的圖象,并且觀察拋物線寫出y <0時,x的取值范圍;
(3)請問(2)中的拋物線經(jīng)過怎樣平移就可以得到y(tǒng)=ax2的圖象?
(4)若該拋物線上兩點A(x1,y1)、B(x2,y2)的橫坐標(biāo)滿足x1>x2>1,試比y1與y2的大小
(1)x=1;(1,2)(2)圖略x<-1或x>3(3)向左平移1個單位,再下平移2個單位(4)y1<y2
解析試題分析:由題意分析可知:y=-x2+x+=,故對稱軸是X=1,頂點坐標(biāo)是(1,2)
(3)由于該拋物線的頂點坐標(biāo)是(1,2),而且根據(jù)平移的基本規(guī)律,左加右減,上加下減,可知向左平移1個單位,再下平移2個單位
(4)有題意知該拋物線開口向下,在對稱軸x=1的一邊,隨著x的增大,y值減小,故y1<y2
考點:二次函數(shù)的圖像
點評:本題考查了二次函數(shù)圖象,二次函數(shù)的性質(zhì),主要利用了對稱軸、頂點坐標(biāo),與x軸的交點的求解,是基礎(chǔ)題,一定要熟練掌握并靈活運用
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.
1.求b+c的值
2.若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆廣東省深圳市華富中學(xué)初三上學(xué)期期中數(shù)學(xué)卷 題型:解答題
已知拋物線y=-x2+mx-m+2.
(Ⅰ)若拋物線與x軸的兩個交點A、B分別在原點的兩側(cè),并且AB=,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點,若拋物線上存在關(guān)于原點對稱的兩點M、N,并且 △MNC的面積等于27,試求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年度濰坊市高密七年級第二學(xué)期期末考試數(shù)學(xué) 題型:解答題
(11·兵團維吾爾)(8分)已知拋物線y=-x2+4x-3與x軸交于A、B兩點(A
點在B點左側(cè)),頂點為P.
(1)求A、B、P三點的坐標(biāo);
(2)在直角坐標(biāo)系中,用列表描點法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時,函
數(shù)值大于零;
(3)將此拋物線的圖象向下平移一個單位,請寫出平稱后圖象的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建尤溪初中畢業(yè)學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.
1.求b+c的值
2.若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州市區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:填空題
(本題滿分5分)已知拋物線y=-x2+bx+c,它與x軸的兩個交點分別為(-1,0),(3,0),求此拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com