2.解下列方程:
(1)x2-4x+1=0(配方法)
(2)x2+3x+1=0(公式法)
(3)(x-3)2+4x(x-3)=0(分解因式法)
(4)(x+1)(x+2)=2x+4.

分析 (1)先利用配方法得到(x-2)2=3,然后利用直接開平方法解方程;
(2)先計算判別式的值,然后利用求根公式法解方程;、
(3)利用因式分解法解方程;
(4)先變形得到(x+1)(x+2)-2(x+2)=0,然后利用因式分解法解方程.

解答 解:(1)x2-4x+4=3,
(x-2)2=3,
x-2=±$\sqrt{3}$,
所以x1=2+$\sqrt{3}$,x2=2-$\sqrt{3}$;
(2)△=32-4×1×1=5,
x=$\frac{-3±\sqrt{5}}{2}$
所以x1=$\frac{-3+\sqrt{5}}{2}$,x2=$\frac{-3-\sqrt{5}}{2}$;
(3)(x-3)(x-3+4x)=0,
x-3=0或x-3+4x=0,
所以x1=3,x2=$\frac{3}{5}$;
(4)(x+1)(x+2)-2(x+2)=0,
(x+2)(x+1-2)=0,
x+2=0或x+1-2=0,
所以x1=-2,x2=1.

點評 本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).也考查了配方法和公式法解一元二次方程.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

12.如圖是一個正方體的表面展開圖,把展開圖折疊成正方體后,與標號為1的頂點重合的是( 。
A.標號為2的頂點B.標號為3的頂點C.標號為4的頂點D.標號為5的頂點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.如圖,糧倉的頂部是圓錐形,這個圓錐的底面周長是30m,母線長7m,為了防雨,需要在它的頂部鋪上油氈,則所需油氈的面積至少是105㎡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.小明的爸爸去商店買茶壺和茶杯,商店為了減少庫存,推出了兩種促銷方案,方案一:買1個茶壺,贈送4個茶杯,再買茶杯時不再優(yōu)惠;方案二:茶壺和所有的茶杯都打八折銷售.如果優(yōu)惠前每個茶壺a元,每個茶杯b元,小明的爸爸要買1個茶壺和12個茶杯.
(1)請用含有a、b的代數(shù)式分別表示在兩種優(yōu)惠方案下,小明的爸爸需要付的錢數(shù);
(2)如果降價前,每個茶壺20元,每個茶杯4元,用哪種方案購買更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

17.某計算程序編輯如圖所示,當輸入x=12或-$\frac{2}{3}$時,輸出的y=3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.(1)用數(shù)軸上的點表示下列各數(shù):-5,2.5,3,-$\frac{5}{2}$,0,-|-3|,3$\frac{1}{2}$.
(2)用“<”號把各數(shù)從小到大連起來;
(3)請寫出其中-5、-|-3|的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.大豐某街道總?cè)丝诩s為39480人,對這個數(shù)據(jù)精確到千位可以表示為3.9×104

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

11.直接寫出結(jié)果:-7ab+6ab=-ab.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.先化簡,再求值:x2-2(x2-3xy)+3(y2-2xy)-2y2,其中x=3,y=-2.

查看答案和解析>>

同步練習冊答案