a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.
∵2a+1,2a+2,2a+3的最小公倍數(shù)是N,
∴可得到:(2a+1)(a+1)(2a+3)=N,
又因?yàn)?a+4整除N,
(2a+1)(a+1)(2a+3)
a+2
一定是整數(shù),
∴一定有(2a+1)=k(a+2),或a+1=k(a+2)或2a+3=k(a+2);
當(dāng)(2a+1)=k(a+2),k為正整數(shù),
∴(2-k)a=2k-1
a=
2-k
2k-1
,∵a為正整數(shù),
∴2-k≥2k-1,∴k≤1,又∵k>0,且為正整數(shù),
∴k=1,代入上式得:a=1;
當(dāng)a+1=k(a+2),k為正整數(shù),
∴(1-k)a=2k-1
∴a=
2k-1
1-k
,∵a為正整數(shù),
∴2k-1≥1-k,∴k≥
2
3

又∵(1-k)>0,且為正整數(shù),
∴k<1,∴
2
3
≤k<1.
∴沒(méi)有正整數(shù)k符合要求;
當(dāng)2a+3=k(a+2),k為正整數(shù),
∴(2-k)a=2k-3
∴a=
2k-3
2-k
,∵a為正整數(shù),
∴2k-3≥2-k,∴k≥
5
3

又∵(2-k)>0,且為正整數(shù),
∴k<2,∴
5
3
≤x<2;
∴沒(méi)有正整數(shù)k符合要求.
綜上所述:a=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:競(jìng)賽輔導(dǎo):整數(shù)的基本知識(shí)1(解析版) 題型:解答題

a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案