【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),且PA=4,PB=,PC=2,以下五個(gè)結(jié)論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點(diǎn)PABC三邊的距離分別為PE,PF,PG,則有 其中正確的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

【答案】B

【解析】

BHPCH,根據(jù)等邊三角形的性質(zhì)得:BA=BC,∠ABC=60°,把△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,證明出△PBD為等邊三角形和△PCD為直角三角形即可求出①;根據(jù)平角性質(zhì),可得∠BPH=30°,證明△ABP為直角三角形,即可求出②和④;根據(jù)面積公式求出③;根據(jù)等面積法即可求出④.

BHPCH

根據(jù)等邊三角形的性質(zhì)得:BA=BC,∠ABC=60°

把△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,連接PD得到上圖

根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=AP=4,BD=BP=,∠PBD=60°

∴△PBD為等邊三角形

PD=PB=,∠BPD=60°

在三角形PDC中,PC=2,PD= CD=4

PC2+PD2=CD2

∴△PCD為直角三角形,∠CPD=90°

∴∠BPC=BPD+CPB=150°,故①錯(cuò)誤;

根據(jù)平角性質(zhì),可得∠BPH=30°

在直角三角形PBH中,∵∠BPH=30°

PB=

BH=,則PH=3

CH=PC+PH=2+3=5

在直角三角形BCH

,則,故④正確;

又∵

∴△ABP為直角三角形,∠APB=90°

∴∠APC=360°-APB-BPC=120°,故選項(xiàng)②正確;

,故選項(xiàng)③錯(cuò)誤;

,故選項(xiàng)⑤正確

故答案選擇:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC,∠AOC100°,將△BOC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 當(dāng)150°時(shí),試判斷△AOD的形狀,并說明理由.

(3) 若△AOD是等腰三角形,請你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1kx+by2x+a的圖象如圖所示,則下列結(jié)論:k0;a0;當(dāng)x3時(shí),y1y2;當(dāng)y10y20時(shí),﹣ax4.其中正確的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:學(xué)習(xí)了分式運(yùn)算后,老師布置了這樣一道計(jì)算題:,甲、乙兩位同學(xué)的解答過程分別如下:

甲同學(xué):

乙同學(xué):

老師發(fā)現(xiàn)這兩位同學(xué)的解答過程都有錯(cuò)誤.

請你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過程,幫助他分析錯(cuò)因,并加以改正.

1)我選擇________同學(xué)的解答過程進(jìn)行分析. (填

2)該同學(xué)的解答從第________步開始出現(xiàn)錯(cuò)誤(填序號),錯(cuò)誤的原因是________;

3)請寫出正確解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1各單位,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)△ABC的頂點(diǎn)A,B的坐標(biāo)分別為(1,4),(﹣3,1).

(1)請?jiān)诰W(wǎng)格所在的平面內(nèi)作出符合上述表述的平面直角坐標(biāo)系;

(2)請你將A、B、C的橫坐標(biāo)不變,縱坐標(biāo)乘以﹣1所得到的點(diǎn)A1、B1、C1描在坐標(biāo)系中,并畫出△A1B1C1,其中點(diǎn)C1的坐標(biāo)為   

(3)△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:已知方程x2+x﹣3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x.所以x=

x=代入已知方程,得(2+﹣3=0,化簡,得y2+2y﹣12=0.

故所求方程為y2+2y﹣12=0.

這種利用方程根的代換求新方程的方法,我們稱為“換根法”.

問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若要建一個(gè)長方形雞場,雞場的一邊靠墻,墻對面有一個(gè)2米寬的門,另三邊用竹籬笆圍成,籬笆總長33米,圍成長方形的雞場除門之外四周不能有空隙.求:

(1)若墻長為18米,要圍成雞場的面積為150平方米,則雞場的長和寬各為多少米?

(2)圍成雞場的面積可能達(dá)到200平方米嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點(diǎn)M旋轉(zhuǎn)后的對應(yīng)點(diǎn)為M′,當(dāng)AM′+DM取得最小值時(shí),點(diǎn)M的坐標(biāo)為( 。

A. (0, B. (0, C. (0, D. (0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C三點(diǎn)在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊ABD和等邊BCE,連接AEBD于點(diǎn)M,連接CDBE于點(diǎn)N,連接MNBMN

1)求證:AECD;

2)試判斷BMN的形狀,并說明理由;

3)設(shè)CDAE相交于點(diǎn)G,求∠AGC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案