已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.
求證:CD=GF.(初二)

【答案】分析:首先根據(jù)四點(diǎn)共圓的性質(zhì)得出GOFE四點(diǎn)共圓,進(jìn)而求出△GHF∽△OGE,再利用GH∥CD,得出==,即可求出答案.
解答:證明:作GH⊥AB,連接EO.
∵EF⊥AB,EG⊥CO,
∴∠EFO=∠EGO=90°,
∴G、O、F、E四點(diǎn)共圓,
所以∠GFH=∠OEG,
又∵∠GHF=∠EGO,
∴△GHF∽△OGE,
∵CD⊥AB,GH⊥AB,
∵GH∥CD,
==,
又∵CO=EO,
∴CD=GF.
點(diǎn)評:此題主要考查了相似三角形的判定以及其性質(zhì)和四點(diǎn)共圓的性質(zhì),根據(jù)已知得出GOFE四點(diǎn)共圓是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,BD是半圓O的直徑,A是BD延長線上的一點(diǎn),BC⊥AE,交AE的延長線于點(diǎn)C,交半圓O于點(diǎn)E,且E為
DF
的中點(diǎn).
(1)求證:AC是半圓O的切線;
(2)若AD=6,AE=6
2
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知;如圖,AB是半圓O的直徑,弦CD∥AB,直線CM、DN分別切半圓于點(diǎn)C、D,且分別和直線AB相交于點(diǎn)M、N.
(1)求證;MO=NO;
(2)設(shè)∠M=30°,求證:MN=4CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是半圓O上的直徑,E是
BC
的中點(diǎn),半徑OE交弦BC于點(diǎn)D,過點(diǎn)C作⊙O的切線精英家教網(wǎng)交OE的延長線于點(diǎn)F.BC=8,DE=2.
(Ⅰ)求⊙O的半徑;
(Ⅱ)求點(diǎn)F到⊙O的切線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.
求證:CD=GF.(初二)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是半圓O的直徑,D是AB延長線上的一點(diǎn),AE⊥DC,交DC的延長線于點(diǎn)E,交半圓O于點(diǎn)F,且C為
BF
的中點(diǎn).
(1)求證:DE是半圓O的切線;
(2)請說明∠EAC=∠BCD的理由.

查看答案和解析>>

同步練習(xí)冊答案