□ABCD的對(duì)角線相交于點(diǎn)O,分別添加下列條件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的條件有 。(填序號(hào))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
據(jù)官方統(tǒng)計(jì),2010年上海世博會(huì)的與會(huì)人數(shù)達(dá)7200萬(wàn)人,72000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
魏縣鴨梨是我省的特產(chǎn),經(jīng)過(guò)加工后出售,單價(jià)可能提高20%,但重量會(huì)減少10%。現(xiàn)有未加工的鴨梨30千克,加工后可以比不加工多賣12元,設(shè)加工前每千克賣x元,加工后每千克賣y元,根據(jù)題意,可列方程組________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
用同樣規(guī)格的黑白兩種顏色的正方形瓷磚,按下圖的方式鋪地板,則第(3)個(gè)圖形中有黑色瓷磚 __________塊,第個(gè)圖形中需要黑色瓷磚__________塊(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連接DF.則∠CDF等于( )。
A、80°° B、70°
C、65° D、60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若一個(gè)平行四邊形的一邊長(zhǎng)為6,一條對(duì)角線長(zhǎng)為4,則另一條對(duì)角線a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平行四邊形ABCD中,M,N分別是AB,CD的中點(diǎn),將四邊形MBCN沿直線MN折疊后得到四邊形MB′C′N,MB′與DN交于點(diǎn)P.若∠A=64°,則∠MPN= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
定義:如果一個(gè)與的函數(shù)圖象經(jīng)過(guò)平移后能與某反比例函數(shù)的圖象重合,那么稱這個(gè)函數(shù)是與的“反比例平移函數(shù)”.
例如:的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的圖象,則是與的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2、3,當(dāng)這兩邊分別增加()、()后,得到的新矩形的面積為8,求與的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)為原點(diǎn),矩形的頂點(diǎn)、的坐標(biāo)分別為(9,0)、(0,3) .點(diǎn)是的中點(diǎn),連接、交于點(diǎn),“反比例平移函數(shù)”的圖象經(jīng)過(guò)、兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為 ;這個(gè)“反比例平移函數(shù)”的圖象經(jīng)過(guò)適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖象重合,請(qǐng)寫出這個(gè)反比例函數(shù)的表達(dá)式 .
(3)在(2)的條件下, 已知過(guò)線段中點(diǎn)的一條直線交這個(gè)“反
比例平移函數(shù)”圖象于、兩點(diǎn)(在的右側(cè)),若、、
、為頂點(diǎn)組成的四邊形面積為16,請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com