分析 (1)本題關(guān)鍵要確定最小覆蓋圓的半徑,然后才能作答;
(2)中轉(zhuǎn)站應(yīng)建在△EFH的外接圓圓心處(線段EF的垂直平分線與線段EH的垂直平分線的交點(diǎn)處);
(3)根據(jù)△EFH是銳角三角形,可知其最小覆蓋圓為△EFH的外接圓,所以中轉(zhuǎn)站建在△EFH的外接圓圓心處,能夠符合題中要求.
解答 解:(1)如圖所示:
(2)若三角形為銳角三角形,則其最小覆蓋圓為其外接圓;
若三角形為直角或鈍角三角形,則其最小覆蓋圓是以三角形最長(zhǎng)邊(直角或鈍角所對(duì)的邊)為直徑的圓.
(3)此中轉(zhuǎn)站應(yīng)建在△EFH的外接圓圓心處(線段EF的垂直平分線與線段EH的垂直平分線的交點(diǎn)處).
理由如下
∠HEF=∠HEG+∠GEF=48°+33.88°=81.88°,
∠EHF=50°,∠EFB=48.12°,
∴△EFH是銳角三角形,所以其最小覆蓋圓為△EFH的外接圓,
設(shè)此外接圓為⊙O,直線EG與⊙O交于點(diǎn)E,M,則
∠
故點(diǎn)G在⊙O內(nèi),從而⊙O也是四邊形EFGH的最小覆蓋圓.
所以中轉(zhuǎn)站建在△EFH的外接圓圓心處,能夠符合題中要求.
點(diǎn)評(píng) 本題考查了三角形外接圓的性質(zhì),關(guān)鍵要懂得何為最小覆蓋圓.知道若三角形為銳角三角形,則其最小覆蓋圓為其外接圓;若三角形為直角或鈍角三角形,則其最小覆蓋圓是以三角形最長(zhǎng)邊(直角或鈍角所對(duì)的邊)為直徑的圓是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11和60° | B. | 11和120° | C. | 12和60° | D. | 14和120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 拋擲一枚質(zhì)地均勻的硬幣看正反面的次數(shù),用實(shí)驗(yàn)方法 | |
B. | 快捷了解歷史資料情況用觀察方法 | |
C. | 了解市民喜歡的體育運(yùn)動(dòng)項(xiàng)目,用訪問(wèn)方法 | |
D. | 打開(kāi)電視機(jī),正在播《動(dòng)物世界》是真命題 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{2}{7}$ | C. | $\frac{7}{2}$ | D. | -$\frac{7}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com