【題目】如圖,中,,,,若動(dòng)點(diǎn)從點(diǎn)開始,按的路徑運(yùn)動(dòng)一周,且速度為每秒,設(shè)運(yùn)動(dòng)的時(shí)間為秒.
()求為何值時(shí),把的周長(zhǎng)分成相等的兩部分
()求為何值時(shí),把的面積分成相等的兩部分;并求此時(shí)的長(zhǎng).
()求為何值時(shí),為等腰三角形?(請(qǐng)直接寫出答案)
【答案】();()5cm;()秒或秒或秒或秒時(shí),為等腰三角形.
【解析】試題分析:(1)先由勾股定理求出△ABC的斜邊AB=10cm,則△ABC的周長(zhǎng)為24cm,所以當(dāng)CP把△ABC的周長(zhǎng)分成相等的兩部分時(shí),點(diǎn)P在AB上,此時(shí)CA+AP=BP+BC=12cm,即可得2t=12,解方程即可求t值;(2)根據(jù)中線的性質(zhì)可知,點(diǎn)P在AB中點(diǎn)時(shí),CP把△ABC的面積分成相等的兩部分,進(jìn)而求解即可;(3)△BCP為等腰三角形時(shí),分三種情況①CP=CB;②BC=BP;③PB=PC,根據(jù)這三種情況分別求得t值即可.
試題解析:
()∵,,
∴,
依題意得,
得,
∴時(shí),把周長(zhǎng)分成相等兩部分.
()要把面積分成兩部分且相等,
∴為的中點(diǎn),
∴,
得,
此時(shí).
()為等腰三角形,共有三種情況,
①,,在上,,,
,在上,此時(shí)可求得,∴,
∴.
②,點(diǎn)在上,
,,
∴.
③,點(diǎn)在的垂直平分線上與的交點(diǎn)處,即為中點(diǎn),
有,
綜上可知,秒或秒或秒或秒時(shí),為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡(jiǎn),得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】()如圖①,在中,,點(diǎn)在上,且,求的度數(shù).
()如圖②,點(diǎn),在射線上,點(diǎn),在射線上,且.
①若,求的度數(shù).
②若以為圓心,為半徑作弧,與射線上沒有交點(diǎn)(除點(diǎn)外),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于,且.
()求證:.
()若,于,為中點(diǎn),與,分別交于點(diǎn),.
①判斷線段與相等嗎?請(qǐng)說明理由.
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)10%,沒有其他贈(zèng)送.
(1)請(qǐng)寫出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在8×8的網(wǎng)絡(luò)中,△ABC是格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),若點(diǎn)A坐標(biāo)為(-1,3),按要求回答下列問題:
(1)建立符合條件的平面直角坐標(biāo)系,并寫出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)將△ABC先向下平移2個(gè)單位長(zhǎng)度,在向右平移3個(gè)單位長(zhǎng)度,得到△DEF,請(qǐng)?jiān)趫D中畫出△DEF,并求出線段AC在平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 相等的角是對(duì)頂角
B. 若直線a與b互相垂直,記作a∥b
C. 內(nèi)錯(cuò)角相等
D. 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,因式分解正確的是( )
A. 2a2﹣2=2(a+1)(a﹣1) B. (a+3)(a﹣3)=a2﹣9
C. ﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3) D. x2﹣2x﹣3=x(x﹣2)﹣3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com