【題目】在四邊形ABCD中,AB∥CD,BC⊥CD,AB=2,CD=3,在BC上取點(diǎn)P(P與B、C不重合)連接PA延長(zhǎng)至E,使PA=2AE,連接PD并延長(zhǎng)至F,使PD=3FD,以PE、PF為邊作平行四邊形,另一個(gè)頂點(diǎn)為G,則PG長(zhǎng)度的最小值為_____.
【答案】7
【解析】
作如下輔助線:連接PG、EF交于點(diǎn)O,PG交AD于點(diǎn)K,過(guò)點(diǎn)A作AM∥EO交PG于點(diǎn)M,過(guò)點(diǎn)D作DN∥FO交PG于點(diǎn)N,由此可得△POE∽△PMA,△POF∽△PND,△AKM∽△DKN,利用對(duì)應(yīng)邊成比例即可求出平行四邊形的對(duì)角線PG必過(guò)點(diǎn)K,且 ,當(dāng)KP⊥BC時(shí),PG的長(zhǎng)度最小,此時(shí)PK=,所以OP=,PG=2OP=7.
解:連接PG、EF交于點(diǎn)O,PG交AD于點(diǎn)K,過(guò)點(diǎn)A作AM∥EO交PG于點(diǎn)M,過(guò)點(diǎn)D作DN∥FO交PG于點(diǎn)N.
∵PA=2AE,PD=3FD,
∴,.
∵AM∥EO,DN∥FO,
∴△POE∽△PMA,△POF∽△PND,
∴,
,
∴MP=OP,NP=OP,AM=EO,DN=FO,
又∵在平行四邊形PEGF中,OE=OF,
∴,
∵AM∥DN,
∴,
∵,
∴,
解得:OP=PK.
由題意可知,PG必過(guò)點(diǎn)K,當(dāng)KP⊥BC時(shí),PG最小,此時(shí)PK= ,
∴OP=PK=,
∴PG=2OP=7.
故答案為:7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過(guò)A、O、B三點(diǎn),連結(jié)OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連結(jié)ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動(dòng)時(shí),求△BON面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在趣味運(yùn)動(dòng)會(huì)“定點(diǎn)投籃”項(xiàng)目中,我校七年級(jí)八個(gè)班的投籃成績(jī)單位:個(gè)分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個(gè)、20個(gè) B. 22個(gè)、21個(gè) C. 20個(gè)、21個(gè) D. 20個(gè)、22個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),點(diǎn)D是 的中點(diǎn),DE是⊙O的切線,DF⊥AB于F,點(diǎn)G是 的中點(diǎn)
(1)求證:△ADE≌△ADF;
(2)若OF=3,AB=10,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過(guò)程中,△APQ可能是直角三角形嗎?請(qǐng)說(shuō)明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說(shuō)明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰中,,的頂點(diǎn)在線段上,不與重合.
(1)如圖①,若且點(diǎn)在中點(diǎn)時(shí),四邊形是什么四邊形并證明?
(2)將繞點(diǎn)旋轉(zhuǎn)至如圖②所示位置,若,設(shè)的面積為;的面積為,求的值(用含有的代數(shù)式表示).
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,第一象限內(nèi)的點(diǎn)P在直線y=x上,過(guò)點(diǎn)P的直線交x軸正半軸于點(diǎn)A,交直線y=3x于點(diǎn)B,點(diǎn)B在第一象限內(nèi).
(1)如圖1,當(dāng)∠OAB=90°時(shí),求的值;
(2)當(dāng)點(diǎn)A的坐標(biāo)為(6,0),且BP=2AP時(shí),將過(guò)點(diǎn)A的拋物線y=﹣x2+mx上下方平移,使它過(guò)點(diǎn)B,求平移的方向和距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人勻速?gòu)耐坏攸c(diǎn)到1500米處的圖書(shū)館看書(shū),甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲乙兩人相距(米),甲行走的時(shí)間為(分),關(guān)于的函數(shù)函數(shù)圖像的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標(biāo)系中,補(bǔ)畫(huà)關(guān)于函數(shù)圖象的其余部分;
(3)問(wèn)甲、乙兩人何時(shí)相距360米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校260名學(xué)生參加植樹(shù)活動(dòng),活動(dòng)結(jié)束后學(xué)校隨機(jī)調(diào)查了部分學(xué)生每人的植樹(shù)棵數(shù),并繪制成如下的統(tǒng)計(jì)圖①和統(tǒng)計(jì)圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)本次接受調(diào)查的學(xué)生人數(shù)為______,圖①中m的值為_______;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù),并根據(jù)樣本數(shù)據(jù),估計(jì)這260名學(xué)生共植樹(shù)多少棵.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com