【題目】如圖,邊長為1的等邊△ABO在平面直角坐標系的位置如圖所示,點O為坐標原點,點Ax軸上,以點O為旋轉中心,將△ABO按逆時針方向旋轉60°,得到△OAB′,則點A′的坐標為_____

【答案】(﹣,﹣

【解析】

BCx軸于C,如圖,根據(jù)等邊三角形的性質得OA=OB=1,AC=OC=,

∠BOA=60°,則易得A點坐標和O點坐標,再利用勾股定理計算出BC=,然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,則點A′與點B關于x軸對稱,于是可得點A′的坐標.

BC⊥x軸于C,如圖,∵△ABO是邊長為1的等邊三角形,

∴OA=OB=1,AC=OC=,∠BOA=60°,

∴A點坐標為(-1, 0),O點坐標為(0, 0),

Rt△BOC中,BC=

∴B點坐標為,);

將△ABO按逆時針方向旋轉60°,得到△OAB′,

∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,

B′與點A重合,點A′與點B關于x軸對稱即點A′的坐標為,).

故答案為:).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】歐城物業(yè)為美化小區(qū),要對面積為9600平方米的區(qū)域進行綠化,計劃安排甲、乙兩個園林隊完成,已知甲園林隊每天綠化面積是乙園林隊每天綠化面積的2倍,并且甲、乙兩園林隊獨立完成面積為800平方米區(qū)域的綠化時,甲園林隊比乙園林隊少用2天.

(1)求甲、乙兩園林隊每天能完成綠化的面積分別是多少平方米.

(2)物業(yè)每天需付給甲園林隊的綠化費用為0.4萬元,乙園林隊的綠化費用為0.25萬元,如果這次綠化總費用不超過10萬元,那么歐城物業(yè)至少應安排甲園林隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰△OPQ的頂點P的坐標為(4,3),O為坐標原點,腰長OP5,點Q位于y軸正半軸上,則點Q的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:
(1)將兩幅不完整的圖補充完整;
(2)本次參加抽樣調查的居民有多少人?
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距120km.甲、乙兩輛汽車同時從A地出發(fā)去B地,已知甲車的速度是乙車速度的1.2倍,結果甲車比乙車提前20分鐘到達,求甲車的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABO的三個頂點坐標分別為A1,3),B4,0),O0,0).

1)畫出將△ABO向左平移4個單位長度,再向上平移2個單位長度后得到的△A1B1O1;

2)在(1)中,若△ABC上有一點M3,1),則其在△A1B1O1中的對應點M1的坐標為   ;

3)若將(1)中△A1B1O1看成是△ABO經過一次平移得到的,則這一平移的距離是   ;

4)畫出△ABO關于點O成中心對稱的圖形△A2B2O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列函數(shù): ①y=2﹣3x;②y=﹣ (x>0);③y=x﹣2;④y=2x2﹣1(x>1),
其中y隨x的增大而增大的函數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊長為3,點AC分別在x軸,y軸的正半軸上,點D10)在OA上,POB上一動點,則PA+PD的最小值為_____

查看答案和解析>>

同步練習冊答案