解:(1)∵△ABC是等邊三角形,
∴AB=BC,∠ABE+∠EBC=60°,
∵△BEF是等邊三角形,
∴EB=BF,∠CBF+∠EBC=60°,
∴∠ABE=∠CBF,
在△ABE和△CBF,
∵
,
∴△ABE≌△CBF(SAS),
∴AE=CF;
(2)∵等邊△ABC中,AD是∠BAC的角平分線,
∴∠BAE=30°,∠ACB=60°,
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30°,
∴∠ACF=∠BCF+∠ACB=30°+60°=90°;
分析:(1)根據(jù)△ABC是等邊三角形,得出AB=BC,∠ABE+∠EBC=60°,再根據(jù)△BEF是等邊三角形,得出EB=BF,∠CBF+∠EBC=60°,從而求出∠ABE=∠CBF,最后根據(jù)SAS證出△ABE≌△CBF,即可得出AE=CF;
(2)根據(jù)△ABC是等邊三角形,AD是∠BAC的角平分線,得出∠BAE=30°,∠ACB=60°,再根據(jù)△ABE≌△CBF,得出∠BCF=∠BAE=30°,從而求出∠ACF的度數(shù).
點評:此題考查了等邊三角形的性質(zhì)和全等三角形的判定,關鍵是根據(jù)等邊三角形的性質(zhì)得出∠ABE=∠CBF,掌握全等三角形的判定,角平分線的性質(zhì)等知識點.