【題目】能用平方差公式計算的是( )
A.(-x+2y)(x-2y)B.(2x-y)(2y+x)C.(m-n)(n-m)D.
【答案】D
【解析】
只要符合兩項的和與這兩項的差的積的形式,才能運用平方差公式計算.根據(jù)這個進(jìn)行分析即可得到答案.
A. (x+2y)(x2y),因為x與x、2y與2y都是互為相反數(shù),不符合平方差公式,所以不能運用平方差公式計算;
B. (2xy)(2y+x)=(2xy)(x+2y),括號里的相同字母的兩項的系數(shù)的絕對值相等,不符合平方差公式,所以不能運用平方差公式計算;
C. (mn)(nm)=(mn)(m+n),因為m與m、n與n都是互為相反數(shù),不符合平方差公式,所以不能運用平方差公式計算;
D. 99×101=(1001)(100+1)=100212=100001=9999,
符合平方差公式,所以能運用平方差公式計算;
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知長方形,點,.
(1)如圖,有一動點在第二象限的角平分線上,若,求的度數(shù);
(2)若把長方形向上平移,得到長方形.
①在運動過程中,求的面積與的面積之間的數(shù)量關(guān)系;
②若,求的面積與的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于B(-3,0)、C(1,0)兩點,與y軸交于點A(0,2),拋物線的頂點為D.連接AB,點E是第二象限內(nèi)的拋物線上的一動點,過點E作EP⊥BC于點P,交線段AB于點F.
(1)求此拋物線的解析式;
(2)過點E作EG⊥AB于點G,Q為線段AC的中點,當(dāng)△EGF周長最大時,在 軸上找一點R,使得|RE-RQ|值最大,請求出R點的坐標(biāo)及|RE-RQ|的最大值;
(3)在(2)的條件下,將△PED繞E點旋轉(zhuǎn)得△ED′P′,當(dāng)△AP′P是以AP為直角邊的直角三角形時,求點P′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)中,及時對知識進(jìn)行歸納和整理是完善知識結(jié)構(gòu)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識歸納整理如下:
(1)請你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:
① ;② ;③ ;④ .
(2)如果點C的坐標(biāo)為(1,3) ,求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(2a+1)2-(2a+1)(-1+2a) (2)2006×2008-20072
(3)(x-y)3·(x-y)2·(y-x) (4)(3mn+1)(3mn-1)-8m2n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:
按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項,記為,依次類推,排在第位的數(shù)稱為第項,記為.
一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().如:數(shù)列1,3,9,27,…為等比數(shù)列,其中,公比為.
則:(1)等比數(shù)列3,6,12,…的公比為_____________,第4項是________________.
(2)如果一個數(shù)列, , , ,…是等比數(shù)列,且公比為,那么根據(jù)定義可得到:
, , ,…… .
∴, , ,
由此可得:an=____________________(用a1和q的代數(shù)式表示)
(3)若一等比數(shù)列的公比q=2,第2項是10,請求它的第1項與第4項.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D,E分別在直角邊AC,BC上,且∠DOE=90°,DE交OC于點P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF,給出下列結(jié)論:①PD=EC;②四邊形PECF的周長為8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值為;⑥AP⊥EF,其中正確結(jié)論的序號為( )
A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com