A. | 0.8cm | B. | 0.7cm | C. | 0.6cm | D. | 1cm |
分析 根據(jù)條件可以得出∠E=∠ADC=90°,進而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出BE的值.
解答 解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
$\left\{\begin{array}{l}{∠E=∠ADC}\\{∠EBC=∠DCA}\\{BC=AC}\end{array}\right.$,
∴△CEB≌△ADC(AAS),
∴BE=DC,CE=AD=2.5.
∵DC=CE-DE,DE=1.7cm,
∴DC=2.5-1.7=0.8cm,
∴BE=0.8cm
故選:A.
點評 本題考查了垂直的性質的運用,直角三角形的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | x(x-1)=15 | B. | x(x+1)=15 | C. | $\frac{x(x-1)}{2}$=15 | D. | $\frac{x(x+1)}{2}$=15 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 156×10-9米 | B. | 15.6×10-8米 | C. | 0.156×10-7米 | D. | 1.56×10-7米 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com