(2002•曲靖)閱讀下面的題目及分析過程,并按要求進行證明.
已知:如圖,E是BC的中點,點A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應用全等三角形或等腰三角形的判定和性質,觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等.因此,要證AB=CD,必須添加適當?shù)妮o助線,構造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請任意選擇其中一種,對原題進行證明.


【答案】分析:證明兩條線段相等,常用的一般方法是應用全等三角形或等腰三角形的判定和性質,觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等.因此,要證AB=CD,必須添加適當?shù)妮o助線,構造全等三角形或等腰三角形.
解答:證明:方法一:作BF⊥DE于點F,CG⊥DE于點G.
∴∠F=∠CGE=90°.
又∵∠BEF=∠CEG,BE=CE,
∴△BFE≌△CGE.
∴BF=CG.
在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,
∴△ABF≌△DCG.
∴AB=CD.

方法二:作CF∥AB,交DE的延長線于點F.
∴∠F=∠BAE.
又∵∠ABE=∠D,
∴∠F=∠D.
∴CF=CD.
∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,
∴△ABE≌△FCE.
∴AB=CF.
∴AB=CD.

方法三:延長DE至點F,使EF=DE.
又∵BE=CE,∠BEF=∠CED,
∴△BEF≌△CED.
∴BF=CD,∠D=∠F.
又∵∠BAE=∠D,
∴∠BAE=∠F.
∴AB=BF.
∴AB=CD.
點評:主要考查輔助線的添加及全等三角形的判定方法的掌握,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年江蘇省無錫市宜興市初三數(shù)學適應性練習(解析版) 題型:選擇題

(2002•曲靖)下列關于拋物線y=x2+2x+1的說法中,正確的是( )
A.開口向下
B.對稱軸方程為x=1
C.與x軸有兩個交點
D.頂點坐標為(-1,0)

查看答案和解析>>

科目:初中數(shù)學 來源:2002年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:解答題

(2002•宜昌)閱讀下題的解答過程,請判斷是否有錯,若有錯誤請你在其右邊寫出正確的解答.
已知:m是關于x的方程mx2-2x+m=0的一個根,求m的值.
解:把x=m代入原方程,化簡得m3=m,兩邊同除以m,得m2=1,
∴m=1,把m=1代入原方程檢驗可知:m=1符合題意.
答:m的值是1.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2002•宜昌)閱讀下題的解答過程,請判斷是否有錯,若有錯誤請你在其右邊寫出正確的解答.
已知:m是關于x的方程mx2-2x+m=0的一個根,求m的值.
解:把x=m代入原方程,化簡得m3=m,兩邊同除以m,得m2=1,
∴m=1,把m=1代入原方程檢驗可知:m=1符合題意.
答:m的值是1.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年云南省曲靖市中考數(shù)學試卷(解析版) 題型:解答題

(2002•曲靖)閱讀下面的題目及分析過程,并按要求進行證明.
已知:如圖,E是BC的中點,點A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應用全等三角形或等腰三角形的判定和性質,觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等.因此,要證AB=CD,必須添加適當?shù)妮o助線,構造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請任意選擇其中一種,對原題進行證明.


查看答案和解析>>

同步練習冊答案