【題目】如圖①,點為直線上一點,過點作射線,使,將一直角三角板的直角頂點放在點處,一邊在射線上,另一邊在直線的上方.

1)在圖①中,__________度;

2)將圖①中的三角板繞點按逆時針方向旋轉,使得的內部,如圖②,若,求的度數(shù);

3)將圖①中的三角板繞點以每秒的速度沿逆時針方向旋轉一周,在旋轉的過程中,當直線恰好平分銳角時,旋轉的時間是__________.(直接寫出結果)

【答案】(1)30;(2)54°;(3)321.

【解析】

1)由題意得出∠MON=90°,得出∠COM=MON-BOC=90°-60°=30°;

2)設∠BON=α,則∠NOC=60°-α,∠MOC=MON-NOC=90°-60°+α=30°+α,∠MOA=180°-MON-BON=180°-90°-α=90°-α,由題意得出60°-α=90°-α),解得α=54°即可;

3)求出∠BON=30°或∠BON=210°,即可得出答案.

1)∵將一直角三角板的直角頂點放在點O處,一邊ON在射線OB上,另一邊OM在直線AB的上方,

∴∠MON=90°

∴∠COM=MON-BOC=90°-60°=30°,

2)設∠BON=α,

∵∠BOC=60°,

∴∠NOC=60°-α,

∵∠MON=90°

∴∠MOC=MON-NOC=90°-60°+α=30°+α,

MOA=180°-MON-BON=180°-90°-α=90°-α,

∵∠NOC=MOA

60°-α=90°-α),

解得:α=54°

即∠BON=54°;

3)∵直線ON平分∠BOC,∠BOC=60°

∴∠BON=30°或∠BON=210°,

∵三角板繞點O以每秒10°的速度沿逆時針方向旋轉一周,

∴直線ON平分∠BOC時,旋轉的時間是321秒,

故答案為:321.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點Ay軸上,點Bx軸上,且OA=OB=1,經過原點O的直線交線段AB于點C,過COC的垂線,與直線x=1相交于點P,現(xiàn)將直線O點旋轉,使交點CAB運動,但C點必須在第一象限內,并記AC的長為t,分析此圖后,對下列問題作出探究:

(1)當△AOC△BCP全等時,求出t的值。

(2)通過動手測量線段OCCP的長來判斷它們之間的大小關系?并證明你得到的結論。

(3)①設點P的坐標為(1,b),試寫出b關于t的函數(shù)關系式和變量t的取值范圍。求出當△PBC為等腰三角形時點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校圍繞著你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學生進行了隨機抽樣調查,從而得到一組數(shù)據,如圖1是根據這組數(shù)據繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:

(1)該校對多少名學生進行了抽樣調查?

(2)本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數(shù)的百分比是多少?

(3)若該校九年級共有400名學生,圖2是根據各年級學生人數(shù)占全校學生總人數(shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

(1)將拋物線放在所給的直角坐標系中(如圖2所示),其表達式是y=ax2+c的形式.請根據所給的數(shù)據求出a,c的值.

(2)求支柱MN的長度.

(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點M是弧AB的中點,CMAB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A在反比例函數(shù)x>0)的圖象上,點B在反比例函數(shù)。x>0)的圖象上,且∠AOB=90°,則tanOAB的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形的一條邊長為6cm,那么這個平行四邊形的兩條對角線的長可以是(   )

A. 8cm3cm B. 8cm4cm C. 8cm5cm D. 8cm20cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃購買一批排球和足球,已知購買2個排球和1個足球共需321元,購買3個排球和2個足球共需540元.

(1)求每個排球和足球的售價;

(2)若學校計劃購買這兩種球共50個,總費用不超過5500元,那么最多可購買足球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(0,2),在x軸上任取一點M,連接AM,作AM的垂直平分線l1.過點Mx軸的垂線l2,l1l2交于點P.設P點的坐標為(x,y).

(Ⅰ)當M的坐標。3,0)時,點P的坐標為   ;

(Ⅱ)求x,y滿足的關系式;

(Ⅲ)是否存在點M,使得MPA恰為等邊三角形?若存在,求點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案