精英家教網(wǎng)如圖,已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對(duì)稱(chēng),與y軸交于點(diǎn)M,與x軸交于點(diǎn)A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出與一般形式拋物線y=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式(不要求證明);
(2)若A,B的中點(diǎn)是點(diǎn)C,求sin∠CMB;
(3)如果過(guò)點(diǎn)M的一條直線與y=mx2+nx+p圖象相交于另一點(diǎn)N(a,b),a≠b且滿(mǎn)足a2-a+q=0,b2-b+q=0(q為常數(shù)),求點(diǎn)N的坐標(biāo).
分析:(1)可先求出拋物線y=x2+6x+5的頂點(diǎn)坐標(biāo),然后根據(jù)兩拋物線關(guān)于y軸對(duì)稱(chēng)得出所求拋物線的頂點(diǎn),可用頂點(diǎn)式二次函數(shù)通式來(lái)設(shè)所求的拋物線的解析式,然后將兩函數(shù)與y軸的交點(diǎn)M的坐標(biāo)代入所求的拋物線中即可得出其解析式.
兩拋物線關(guān)于y軸對(duì)稱(chēng),其開(kāi)口方向,開(kāi)口大小以及與y軸的交點(diǎn)都一樣,因此a、c的值不變,而兩函數(shù)的對(duì)稱(chēng)軸關(guān)于y軸對(duì)稱(chēng),因此b值互為相反數(shù),因此與一般形式拋物線y=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式為y=ax2-bx+c.
(2)本題要先求出A、B、M的坐標(biāo),過(guò)C作CD⊥BM于D,那么關(guān)鍵是求出CD和MC的長(zhǎng),可在直角三角形CDB中,用BC的長(zhǎng)和∠MBA的正弦值求出CD的長(zhǎng),然后在直角三角形OCM中,根據(jù)勾股定理求出CM的長(zhǎng),據(jù)此可得出sin∠CMB的值.
(3)可設(shè)直線的解析式為y=kx+5;由于N是兩函數(shù)的交點(diǎn),因此可聯(lián)立兩函數(shù)的解析式,用k表示出a,b的值,由題意可知a,b為方程x2-x+q=0的兩根,根據(jù)韋達(dá)定理可知a+b=1,由此可求出k的值,然后將k的值代入表示a,b的式子中即可求出N點(diǎn)的坐標(biāo).
解答:精英家教網(wǎng)解:(1)y=x2+6x+5的頂點(diǎn)為(-3,-4),
即y=mx2+nx+p的頂點(diǎn)的為(3,-4),
設(shè)y=mx2+nx+p=a(x-3)2-4,
y=x2+6x+5與y軸的交點(diǎn)M(0,5),
即y=mx2+nx+p與y軸的交點(diǎn)M(0,5).
即a=1,
所求二次函數(shù)為y=x2-6x+5.
猜想:與一般形式拋物線y=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式是y=ax2-bx+c.

(2)過(guò)點(diǎn)C作CD⊥BM于D.
拋物線y=x2-6x+5與x軸的交點(diǎn)A(1,0),B(5,0),與y軸交點(diǎn)
M(0,5),AB中點(diǎn)C(3,0).
故△MOB,△BCD是等腰直角三角形,CD=
2
2
BC=2.
在Rt△MOC中,MC=
34

則sin∠CMB=
CD
MC
=
17
17


(3)設(shè)過(guò)點(diǎn)M(0,5)的直線為y=kx+5
y=kx+5
y=x2-6x+5
,
解得
x1=0
y1=5
x2=k+6
y2=k2+6k+5

則a=k+6,b=k2+6k+5.
由已知a,b是方程x2-x+q=0的兩個(gè)根,
故a+b=1.
即k+6+k2+6k+5=1,化簡(jiǎn)k2+7k+10=0,
則k1=-2,k2=-5.
點(diǎn)N的坐標(biāo)是(4,-3)或(1,0).
點(diǎn)評(píng):考查一元二次方程根與系數(shù)的關(guān)系、二次函數(shù)解析式的確定、軸對(duì)稱(chēng)圖形、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱(chēng)軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱(chēng)軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱(chēng)軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿(mǎn)足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以?huà)佄锞上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案