已知菱形ABCD的對角線AC、BD的長度是6和8,則這個菱形的周長是( )
A.20
B.14
C.28
D.24
【答案】分析:由菱形對角線的性質,相互垂直平分即可得出菱形的邊長,菱形四邊相等即可得出周長.
解答:解:根據(jù)題意,設對角線AC、BD相交于O,
則由菱形對角線性質知,AO=AC=3,BO=BD=4,且AO⊥BO,
∴AB=5,
∴周長L=4AB=20,
故選A.
點評:本題考查菱形的性質,難度適中,要熟練掌握菱形對角線的性質,及勾股定理的靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖(1)菱形ABCD的邊長為4,∠ADC=120°,如圖(2),將菱形沿著AC剪開,如圖(3),將△ABC經(jīng)過旋轉后與△ACD疊放在一起,得到四邊形AA′CD,AC與A′D相交于點E,連接AA′.
(1)填空:在圖(1)中,AC=
4
3
4
3
.BD=
4
4
.在圖(3)中,四邊形AA′CD是
等腰
等腰
梯形;
(2)請寫出圖(3)中三對相似三角形(不含全等三角形),并選擇其中的一對加以證明;
(3)求AD:DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源:河北省同步題 題型:單選題

已知E為菱形ABCD的DC延長線上的一點,CE=CD=2cm,AE=6 cm,且F恰好為AE的中點,則下圖中的相似三角形有
[     ]
A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

同步練習冊答案