拋物線y=x2-2x-3與x軸交點為A,B,交y軸于點C,求△ABC的面積.
分析:由y=-x2-2x-3與x軸交于點A、B,即y=0,求出x,即得到圖象與x軸的交點坐標,與y軸交于點C,即x=0,求出y,得出與y軸的交點坐標,得出AB,OC的長度,從而得出△ABC的面積.
解答:解:解方程x2-2x-3=0得,x1=-1,x2=3,
所以A(-1,0),B(3,0),AB=3-(-1)=4,
可知C點坐標為(0,-3),
∴S=
1
2
×4×3=6
點評:此題主要考查了二次函數(shù)與坐標軸的交點坐標求法,進而得出有關(guān)三角形的面積,正確的得出有關(guān)點的坐標是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=x2+2x-2的圖象上最低點的坐標是(  )
A、(2,-2)B、(1,-2)C、(1,-3)D、(-1,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

43、將拋物線y=x2+2x-3向左平移4個單位,再向下平移3個單位,所得拋物線的函數(shù)表達式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線y=x2+2x-1上有兩點A、B,且原點位于線段AB的三等分點處,則這兩點的坐標為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.拋物線y=-x2-2x+3與x軸相交于點A和點B,與y軸交于點C.
(1)求點A、點B和點C的坐標.
(2)求直線AC的解析式.
(3)設(shè)點M是第二象限內(nèi)拋物線上的一點,且S△MAB=6,求點M的坐標.
(4)若點P在線段BA上以每秒1個單位長度的速度從 B 向A運動(不與B,A重合),同時,點Q在射線AC上以每秒2個單位長度的速度從A向C運動.設(shè)運動的時間為t精英家教網(wǎng)秒,請求出△APQ的面積S與t的函數(shù)關(guān)系式,并求出當(dāng)t為何值時,△APQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+2x-3與x軸的一個交點為(a,0),則代數(shù)式a2+2a+2006的值為( 。

查看答案和解析>>

同步練習(xí)冊答案