【題目】已知二次函數(shù)x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下三個(gè)結(jié)論:①該拋物線的對(duì)稱軸在y軸左側(cè);②關(guān)于x的方程無實(shí)數(shù)根;③≥0.其中,正確結(jié)論的個(gè)數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

從拋物線與x軸最多一個(gè)交點(diǎn)及b>a>0,可以推斷拋物線最小值最小為0,對(duì)稱軸在y軸左側(cè),并得到b2-4ac≤0,從而得到①②為正確;由x=-2時(shí)y大于或等于零可以得到③正確.

b>a>0

<0,

所以①正確;

∵拋物線與x軸最多有一個(gè)交點(diǎn),

b24ac0,

∴關(guān)于x的方程ax2+bx+c+1=0,=b24a(c+1)=b24ac4a<0

所以②正確;

a>0及拋物線與x軸最多有一個(gè)交點(diǎn),

x取任何值時(shí),y0

∴當(dāng)x=2時(shí),4ab+c0

所以③正確;

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) O 是等邊ABC 內(nèi)一點(diǎn),AOB=110°,BOCa.將BOC 繞點(diǎn) C 按順時(shí)針方向旋轉(zhuǎn) 60°ADC,則ADC≌△BOC,連接 OD

(1)求證:COD 是等邊三角形;

(2)當(dāng)α=120°時(shí),試判斷 AD OC 的位置關(guān)系,并說明理由;

(3)探究:當(dāng) a 為多少度時(shí),AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。

A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OCCP4,弦ABOC,劣弧AB的度數(shù)為120°,連接PB

1)求BC的長;

2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC,∠C=90°,BD是角平分線,點(diǎn)OAB,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,BC于點(diǎn)E

(1)求證ACO的切線;

(2)OB=10,CD=,求圖中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展青少年科技創(chuàng)新比賽活動(dòng),“喜洋洋代表隊(duì)設(shè)計(jì)了一個(gè)遙控車沿直線軌道AC做勻速直線運(yùn)動(dòng)的模型.甲、乙兩車同時(shí)分別從A,B出發(fā),沿軌道到達(dá)C,AC,甲的速度是乙的速度的1.5,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:),d1,d2t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題.

(1)填空乙的速度v2=________/;

(2)寫出d1t的函數(shù)表達(dá)式;

(3)若甲、乙兩遙控車的距離超過10米時(shí)信號(hào)不會(huì)產(chǎn)生相互干擾,試探究什么時(shí)間兩遙控車的信號(hào)不會(huì)產(chǎn)生相互干擾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在x軸上,OA=4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°至OB的位置.

(1)求點(diǎn)B的坐標(biāo);

(2)求經(jīng)過點(diǎn)A.O、B的拋物線的解析式;

(3)在此拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+aa>0)分別與x 軸、y 軸交于A、B 兩點(diǎn),C、D 的坐標(biāo)分別為 C(0,b)、D(2aba)(ba

(1)試判斷四邊形ABCD的形狀,并說明理由;

(2)若點(diǎn)C、D關(guān)于直線AB的對(duì)稱點(diǎn)分別為C′、D

①當(dāng)b=3時(shí),試問:是否存在滿足條件的a,使得BCD面積為?

②當(dāng)點(diǎn)C恰好落在x軸上時(shí),試求a b的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案