已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線OAB于點E

【小題1】(1)在點D運動的過程中,若△ODE的面積為S,求S的函數(shù)關系式,并寫出自變量的取值范圍;
【小題2】(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點DM,O′A′分別交CBOA于點N,E.探究四邊形DMEN各邊之間的數(shù)量關系,并對你的結論加以證明;

【小題3】(3)問題(2)中的四邊形DMEN中,ME的長為____________.

【小題1】解:(1)∵矩形OABC中,點A,C的坐標分別為,,
∴點B的坐標為
若直線經(jīng)過點C,則
若直線經(jīng)過點A,則;
若直線經(jīng)過點B,則
①當點E在線段OA上時,即時,(如圖6) 

∵點E在直線上,
時,,
∴點E的坐標
. 
②當點E在線段BA上時,即時,(如圖7) 

∵點D,E在直線上,
時,;
時,
∴點D的坐標為,點E的坐標為


.            綜上可得:
【小題2】(2)DM=ME=EN=ND
證明:如圖8.

∵四邊形OABC和四邊形O′A′B′C′是矩形,
CBOA,C′B′O′A′
DNME,DMNE
∴四邊形DMEN是平行四邊形,且∠NDE=∠DEM
∵矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′
∴∠DEM=∠DEN
∴∠NDE=∠DEN
ND=NE
∴四邊形DMEN是菱形.
DM=ME=EN=ND. 
【小題3】(3)答:問題(2)中的四邊形DMEN中,ME的長為  2. 解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數(shù)的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2數(shù)學公式相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶______個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習冊答案