如圖,D為等腰直角三角形斜邊BC上的一點(diǎn),△ABD繞點(diǎn)A旋轉(zhuǎn)后與△ACE重合,如果AD=1,那么DE=________.


分析:根據(jù)題意,△ABC是等腰直角三角形,△ABD≌△ACE,AD=1,故AD=AE=1,利用勾股定理可求出DE.
解答:因?yàn)椤鰽BD與△ACE是互相旋轉(zhuǎn)可得的,
故△ABD≌△ACE.
因?yàn)锳D=1,
故AD=AE=1,
又可證△ADE是等腰直角三角形,
所以DE==
點(diǎn)評(píng):本題難度較簡(jiǎn)單,主要考查的是旋轉(zhuǎn)的性質(zhì)以及勾股定理的相關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0).△OCD與△OAB關(guān)于y軸對(duì)稱.
(1)求經(jīng)過(guò)D,O,B三點(diǎn)的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過(guò)D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的
 
.(填“左側(cè)”或“右側(cè)”)
(3)在(2)的條件下,設(shè)過(guò)D,O,B′三點(diǎn)的精英家教網(wǎng)拋物線的對(duì)稱軸為直線x=m.求當(dāng)k為何值時(shí),|m|=
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=2x+2與x軸,y軸分別交于A、B兩點(diǎn),點(diǎn)C是在第一象限內(nèi)此直線上的一個(gè)動(dòng)點(diǎn),以BC為直角邊作如圖所示的等腰直角三角形BCD,點(diǎn)E在過(guò)A、C、D三點(diǎn)的圓上,且DE⊥BD,連結(jié)CE、AD.
(1)找出圖中一對(duì)相似三角形(不再標(biāo)記字母),并說(shuō)明理由;
(2)在C的運(yùn)動(dòng)過(guò)程中,DE的長(zhǎng)度是否改變?若不變,請(qǐng)求出DE的長(zhǎng);若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道三角形三條中線的交點(diǎn)叫做三角形的重心.經(jīng)過(guò)證明我們可得三角形重心具備下面的性質(zhì): 重心到頂點(diǎn)的距離與重心到該頂點(diǎn)對(duì)邊中點(diǎn)的距離之比為2﹕1.請(qǐng)你用此性質(zhì)解決下面的問(wèn)題.
已知:如圖,點(diǎn)為等腰直角三角形的重心,,直線過(guò)點(diǎn),過(guò) 三點(diǎn)分別作直線的垂線,垂足分別為點(diǎn).              
<1>當(dāng)直線平行時(shí)(圖1),請(qǐng)你猜想線段三者之間的數(shù)量關(guān)系并證明;
<2>當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到與不平行時(shí),分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請(qǐng)給予證明;若不成立,線段三者之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年北京二龍路中學(xué)九年級(jí)第一學(xué)期期中測(cè)試數(shù)學(xué)卷 題型:解答題

我們知道三角形三條中線的交點(diǎn)叫做三角形的重心.經(jīng)過(guò)證明我們可得三角形重心具備下面的性質(zhì): 重心到頂點(diǎn)的距離與重心到該頂點(diǎn)對(duì)邊中點(diǎn)的距離之比為2﹕1.請(qǐng)你用此性質(zhì)解決下面的問(wèn)題.
已知:如圖,點(diǎn)為等腰直角三角形的重心,,直線過(guò)點(diǎn),過(guò) 三點(diǎn)分別作直線的垂線,垂足分別為點(diǎn).              
<1>當(dāng)直線平行時(shí)(圖1),請(qǐng)你猜想線段三者之間的數(shù)量關(guān)系并證明;
<2>當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到與不平行時(shí),分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請(qǐng)給予證明;若不成立,線段三者之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年蘇教版初中數(shù)學(xué)八年級(jí)上5.1函數(shù)練習(xí)卷(解析版) 題型:選擇題

如圖,和的是等腰直角三形,,.點(diǎn)B與點(diǎn)D重合,點(diǎn)在同一條直線上,將沿方向平移,至點(diǎn)與點(diǎn)重合時(shí)停止.設(shè)點(diǎn)之間的距離為x,重疊部分的面積為,則準(zhǔn)確反映之間對(duì)應(yīng)關(guān)系的圖象是( )

 

查看答案和解析>>

同步練習(xí)冊(cè)答案