如圖,正方形ABCD的邊長為12,劃分成12×12個小正方形格.將邊長為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地擺放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請你認真觀察思考后回答下列問題:
(1)由于正方形紙片邊長n的取值不同,完成擺放時所使用正方形紙片的張數(shù)也不同,請?zhí)顚懴卤恚?table class="edittable">紙片的邊長n23456使用的紙片張數(shù)(2)設正方形ABCD被紙片蓋住的面積(重合部分只計一次)為S1,未被蓋住的面積為S2
①當n=2時,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,請求出這樣的n值;若不存在,請說明理由.

【答案】分析:本題關鍵是通過歸納與總結,得到其中的規(guī)律.
解答:解:(1)根據(jù)題意,可得應蓋住正方形ABCD的對角線上的12個格.當是邊長為2的紙片時,則需要1+(12-2)=11張紙片.當邊長為3的時候,則需要1+(12-3)=10張紙片.當邊長為n+4時,則需要1+(12-4)=9張紙片,依此類推進行計算;
紙片的邊長n23456
使用的紙片張數(shù)1110987
(2)①S1=10×3+4=34,S2=144-34=110.
∴S1:S2的值是34:110=17:55.
②根據(jù)題意,得S1=(12-n)×(2n-1)+n2;S2=144-(12-n)×(2n-1)-n2,
若S1=S2時,(12-n)×(2n-1)+n2=144-(12-n)×(2n-1)-n2,
整理得,則n=4或21.
∵2≤n≤11,
∴n=21舍去,
故n=4.
點評:此題要能夠結合圖形進行觀察分析得到規(guī)律.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案