分析:當(dāng)被分解的式子是四項時,應(yīng)考慮運用分組分解法進行分解.本題中要考慮x2y+xy2-xy為一組,-x2-y2-2xy+2x+2y-1,再兩次提取公因式和組成完全平方公式進行分解.
解答:解:x2y+xy2-x2-y2-3xy+2x+2y-1
=x2y+xy2-xy-x2-y2-2xy+2x+2y-1
=xy(x+y+1)-[(x+y)2-2(x+y)+1]
=xy(x+y+1)-(x+y-1)2
=(x+y-1)(xy-x-y+1)
=(x+y-1)(y-1)(x-1).
故答案為:(x+y-1)(y-1)(x-1).
點評:本題考查用分組分解法進行因式分解.有公因式的要先提取公因式,再進行分解,難點是將-3xy拆分為-xy-2xy.