【題目】如圖(1)將△ABD平移,使D沿BD延長(zhǎng)線移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC.
(1)猜想∠B′EC與∠A′之間的關(guān)系,并寫出理由.
(2)如圖將△ABD平移至如圖(2)所示,得到△A′B′D′,請(qǐng)問(wèn):A′D平分∠B′A′C嗎?為什么?
【答案】(1)∠B′EC=2∠A′;(2)A′D′平分∠B′A′C.見(jiàn)解析
【解析】
試題分析:(1)根據(jù)平移的性質(zhì)得出∠BAD=∠DAC,∠BAD=∠A′,AB∥A′B′,進(jìn)而得出∠BAC=∠B′EC,進(jìn)而得出答案;
(2)利用平移的性質(zhì)得出∠B′A′D′=∠BAD,AB∥A′B′,進(jìn)而得出∠BAD=∠BAC,即可得出∠B′A′D′=∠B′A′C.
解:(1)∠B′EC=2∠A′,
理由:∵將△ABD平移,使D沿BD延長(zhǎng)線移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC,
∴∠BAD=∠DAC,∠BAD=∠A′,AB∥A′B′,
∴∠BAC=∠B′EC,
∴∠BAD=∠A′=∠BAC=∠B′EC,
即∠B′EC=2∠A′;
(2)A′D′平分∠B′A′C,
理由:∵將△ABD平移至如圖(2)所示,得到△A′B′D′,
∴∠B′A′D′=∠BAD,AB∥A′B′,
∴∠BAC=∠B′A′C,
∵∠BAD=∠BAC,
∴∠B′A′D′=∠B′A′C,
∴A′D′平分∠B′A′C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】這個(gè)周末,七年級(jí)準(zhǔn)備組織觀看電影《我和我的祖國(guó)》,由各班班長(zhǎng)負(fù)責(zé)買票,一班班長(zhǎng)問(wèn)售票員買團(tuán)體票是否可以優(yōu)惠,售票員說(shuō):50人以上的團(tuán)體票有兩個(gè)優(yōu)惠方案可選擇:
方案一:全體人員可打8折;
方案二:若打9折,有6人可以免票.
一班班長(zhǎng)思考了一會(huì)兒,說(shuō)我們班無(wú)論選擇哪種方案要付的錢是一樣的,請(qǐng)問(wèn)一班有幾人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用,,,…表示,則頂點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形ABC與三角形A'B'C'在平面直角坐標(biāo)系中的位置如圖:
(1)分別寫出下列各點(diǎn)的坐標(biāo):A'_____; B'_____;C'_____;
(2)三角形A'B'C'由三角形ABC經(jīng)過(guò)怎樣的平移得到?___________;
(3)若點(diǎn)P(a,b)是三角形ABC內(nèi)部一點(diǎn),則平移后三角形A'B'C'內(nèi)的對(duì)應(yīng)點(diǎn)P'的坐標(biāo)為_________;
(4)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中C點(diǎn)坐標(biāo)為(1 ,2).
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A'B'C',則△A'B'C'的三個(gè)頂點(diǎn)坐標(biāo)分別是A'( , )、B'( 、 )、 C'( 、 )
(3)計(jì)算△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=13cm,AC=20cm,BC邊上的高為12cm,則△ABC的面積為________cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com