精英家教網(wǎng)如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若∠AOB=120°,則大圓半徑R與小圓半徑r之間滿足(  )
A、R=
3
r
B、R=3r
C、R=2r
D、R=2
2
r
分析:首先連接OC,根據(jù)切線的性質(zhì)得到OC⊥OB,再根據(jù)等腰三角形的性質(zhì)可得到∠COB=60°,從而進一步求出∠B=30°,再利用直角三角形中30°角所對的邊等于斜邊的一半,可得到R與r的關(guān)系.
解答:精英家教網(wǎng)解:連接OC,∵C為切點,
∴OC⊥AB,
∵OA=OB,
∴∠COB=
1
2
∠AOB=60°,
∴∠B=30°,
∴OC=
1
2
OB,
∴R=2r.
故選C.
點評:此題主要考查了切線的性質(zhì)和直角三角形的性質(zhì),運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(附加題)如圖,以O(shè)為圓心的兩個同心圓中,大圓的直徑AD交小圓于M,N兩點,大圓的弦AB切小精英家教網(wǎng)圓于點C,過點C作直線CE⊥AD,垂足為E,交大圓于F,H兩點.
(1)試判斷線段AC與BC的大小關(guān)系,并說明理由;
(2)求證:FC•CH=AE•AO;
(3)若FC,CH是方程x2-2
5
x+4=0的兩根(CH>CF),求圖中陰影部分圖形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB切小圓于P,如果AB=4cm,則圖中陰影部分的面積為
 
cm2.(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,C為切點,若兩圓的半徑分別為3cm和5cm,則AB的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,切點為C,若AB=2
3
cm,OA=2cm,則圖中陰影部分(扇形)的面積為
π
6
cm2
π
6
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,C為切點.若兩圓的半徑分別為6cm和10cm,則AB的長為
16
16
 cm.

查看答案和解析>>

同步練習(xí)冊答案