【題目】甲、乙兩名同學(xué)參加少年科技創(chuàng)新選拔賽,六次比賽的成績?nèi)缦拢?/span>
甲:87 93 88 93 89 90
乙:85 90 90 96 89
(1)甲同學(xué)成績的中位數(shù)是__________;
(2)若甲、乙的平均成績相同,則__________;
(3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學(xué)參加比賽,應(yīng)該選誰?說明理由.
【答案】(1)89.5;(2)90;(3)甲,理由見解析.
【解析】
(1)將甲的成績按照從大到小重新排列,中間兩個數(shù)的平均數(shù)即是中位數(shù);
(2)求出甲的成績總和得到乙的成績總和,減去其他成績即可得到a;
(3)求出甲的平均數(shù),計算出方差,根據(jù)甲、乙的方差大小即可做出選擇.
(1)將成績從大到小重新排列為:93、93、90、89、88、87,
∴中位數(shù)為: ,
故答案為:89.5;
(2)∵甲、乙的平均成績相同,
∴甲、乙的總成績相同,
∴a=(87+93+88+93+89+90)-(85+90+90+96+89)=90;
故答案為:90;
(3)先甲,理由如下:
甲的平均數(shù)==90,
甲的方差S2==,
∵>,
∴甲發(fā)揮穩(wěn)定,應(yīng)該選甲.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).
(1)求出拋物線的解析式;
(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;
(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求的值.
小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的函數(shù),自變量的取值范圍為,下表是與的幾組對應(yīng)值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的與之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小明的探究過程,請補充完整:
(1)如圖,在平面直角坐標(biāo)系中,指出了以上表中各對對應(yīng)值為坐標(biāo)的點. 根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)根據(jù)畫出的函數(shù)圖象填空.
①該函數(shù)圖象與軸的交點坐標(biāo)為_____.
②直接寫出該函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:
(1)在函數(shù)中,自變量x的取值范圍是________.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | m | … |
①求m的值;
②在平面直角坐標(biāo)系xOy中,描出以上表中各組對應(yīng)值為坐標(biāo)的點,并根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)結(jié)合函數(shù)圖象寫出該函數(shù)的一條性質(zhì):________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個紙盒內(nèi)有張完全相同的卡片,分別標(biāo)號為,,,.隨機抽取一張卡片后不放回,再隨機抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標(biāo)號等于”的概率;
(2)小明同學(xué)連續(xù)做了次試驗,這次試驗沒有一次出現(xiàn)“兩次抽出卡片的標(biāo)號和等于”.他說,“第次試驗我一定能夠‘兩次抽出卡片的標(biāo)號和等于’”.你認(rèn)為他說得對嗎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將進行“校春季運動會”,現(xiàn)從全校學(xué)生中選出名同學(xué)參加運動會相關(guān)服務(wù)工作,其中名男生,名女生.
(1)若從這名同學(xué)中隨機選取人作為聯(lián)絡(luò)員,求選到男生的概率.
(2)若運動會的某項服務(wù)工作只在,兩位同學(xué)中選一人,準(zhǔn)備用游戲的方式?jīng)Q定誰參加.游戲規(guī)則是:四個乒乓球上的數(shù)字分別為,,,(乒乓球只有數(shù)字不同,其余完全相同),將乒乓球放在不透明的紙箱中,從中任意摸取兩個,若取到的兩個乒乓球上的數(shù)字之和大于則選,否則選,從是否公平的角度看,該游戲規(guī)則是否合理,用樹狀圖或表格說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD.下列結(jié)論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的個數(shù)是 ( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,將△BCE沿BE折疊后得到△BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com