【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長為(
A.1.8
B.2.4
C.3.2
D.3.6

【答案】D
【解析】解:連接BF,
∵BC=6,點E為BC的中點,
∴BE=3,
又∵AB=4,
∴AE= =5,
∴BH= ,
則BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF= =3.6.
故選:D.
【考點精析】通過靈活運用矩形的性質(zhì)和翻折變換(折疊問題),掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長線交于點E,與DC交于點F.

(1)求證:CD=BE;

(2)若AB=4,點F為DC的中點,DG⊥AE,垂足為G,且DG=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2 臺.
(1)求甲、乙兩種品牌空調(diào)的進貨價;
(2)該商場擬用不超過16000 元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請你幫該商場設(shè)計一種進貨方案,使得在售完這10 臺空調(diào)后獲利最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內(nèi)一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=AC.

(1)求∠CDE的度數(shù);

(2)若點M在DE上,且DC=DM,求證:ME=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+1與雙曲線y= 的一個交點為A(m,﹣3).
(1)求雙曲線的表達(dá)式;
(2)過動點P(n,0)(n<0)且垂直于x軸的直線與直線y=2x+1和雙曲線y= 的交點分別為B,C,當(dāng)點B位于點C上方時,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雷達(dá)二維平面定位的主要原理是:測量目標(biāo)的兩個信息距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測器顯示在點A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

同步練習(xí)冊答案