如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線,則下面五個結(jié)論:
①DE=1;②△CDE∽△CAB;③△CDE的面積與四邊形ABED的面積之比為1:3;④梯形ABED的中位線長為
3
2
;⑤DG:GB=1:2
其中正確的有( 。
分析:根據(jù)三角形中位線定理可得DE=
1
2
AB,DE∥AB,進而可得①②的正誤;再根據(jù)相似三角形的面積之比等于對應(yīng)邊之比的平方可判斷出③的正誤;再根據(jù)梯形的中位線定理可計算出④的正誤,然后再證明△DEG∽△BAG,再根據(jù)相似三角形的性質(zhì)可判斷出⑤.
解答:解:∵DE是△ACB的中位線,
∴DE=
1
2
AB,DE∥AB,
∵等邊三角形ABC的邊長為2,
∴AB=2,
∴DE=1,
故①正確;
∵DE∥AB,
∴△CDE∽△CAB,
故②正確;
∵△CDE∽△CAB,
DE
AB
=
1
2
,
S△CDE
S△CAB
=
1
4

∴△CDE的面積與四邊形ABED的面積之比為1:3,
故③正確;
∵DE=1,AB=2,
1
2
(AB+DE)=
3
2
,
故④正確;
∵DE∥AB,
∴△DEG∽△BAG,
DG
BG
=
DE
AB
=
1
2

故⑤正確;
故選:D.
點評:此題主要考查了相似三角形的判定與性質(zhì),以及三角形和梯形的中位線定理,關(guān)鍵是掌握三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖1,當點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?點F是否在直線NE上?都請直接寫出結(jié)論,不必證明或說明理由;
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖2證明;若不成立,請說明理由;
(3)若點M在點C右側(cè)時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請直接寫出結(jié)論,不必證明或說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點D,在AC上取點E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個頂點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.
(1)猜測直線BE和直線AC的位置關(guān)系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.請猜測直線BE和直線AC的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發(fā)以1cm/s的速度向點A運動,點Q從點C出發(fā)以2cm/s的速度向點A運動,連接PQ,以Q為旋轉(zhuǎn)中心,將線段PQ按逆時針方向旋轉(zhuǎn)60°得線段QD,若點P、Q同時出發(fā),則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習冊答案