4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( 。
分析:由圓周角定理得到∠AOC,再由平行得∠A,最后利用三角形的外角性質(zhì)求出∠AMB.
解答:解:∵∠C=20°
∴∠AOB=40°
又∵弦BC∥半徑OA
∴∠OAC=∠C=20°
∵∠AMB是△AOM的外角
∴∠AMB=60°.
故選B.
點評:熟練掌握圓周角定理,平行線的性質(zhì)和三角形的外角定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)設(shè)點P是⊙M上的一個動點,當(dāng)△PAB為Rt△PAB時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊答案