【題目】如圖所示,已知∠A=∠F,∠C=∠D,按圖填空,并在括號內(nèi)注明理由.

∵∠A=∠F(

∴∠D=∠ABD(
又∵∠D=∠C(
∴∠C=∠ABD(

【答案】已知;DF;AC;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;已知;等量代換;BD;EC;同位角相等,兩直線平行
【解析】解:∵∠A=∠F(已知),

∴DF∥AC(內(nèi)錯角相等,兩直線平行),

∴∠D=∠ABD(兩直線平行,內(nèi)錯角相等),

∵∠D=∠C(已知),

∴∠C=∠ABD(等量代換),

∴BD∥EC(同位角相等,兩直線平行),

所以答案是:已知,DF,AC,內(nèi)錯角相等,兩直線平行,兩直線平行,內(nèi)錯角相等,已知,等量代換,BD,EC,同位角相等,兩直線平行.

【考點精析】根據(jù)題目的已知條件,利用平行線的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點E.

(1)求∠AED的度數(shù);
(2)當(dāng)∠EDC滿足什么條件時,AE∥DC證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(π﹣1) +|5﹣ |﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某部隊將在指定山區(qū)進(jìn)行軍事演習(xí),為了使道路便于部隊重型車輛通過,部隊工兵連接到搶修一段長3600米道路的任務(wù),按原計劃完成總?cè)蝿?wù)的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時完成任務(wù).

1按原計劃完成總?cè)蝿?wù)的時,已搶修道路   米;

2求原計劃每小時搶修道路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑期中,哥哥和弟弟二人分別編織28個中國結(jié),已知弟弟單獨編織一周(7天)不能完成,而哥哥單獨編織不到一周就已完成.哥哥平均每天比弟弟多編2個. 求:
(1)哥哥和弟弟平均每天各編多少個中國結(jié)?(答案取整數(shù))
(2)若弟弟先工作2天,哥哥才開始工作,那么哥哥工作幾天,兩人所編中國結(jié)數(shù)量相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象在第一象限相交于點A(6,n),與x軸相交于點B

1填空:n的值為 k的值為 ;當(dāng)y24時,x的取值范圍是 ;

2)以AB為邊作菱形ABCD,使點C在點B右側(cè)的x軸上,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):0,1,2,3,3,5,5,10的中位數(shù)是( )
A.2.5
B.3
C.3.5
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】園林部門用3600盆甲種花卉和2900盆乙種花卉搭配A、B兩種園藝造型共50個,掛放在迎賓大道兩側(cè),搭配每個造型所要花盆數(shù)如表,綜合上述信息,解答下列問題.

造型

A

90盆

30盆

B

40盆

100盆


(1)符合題意的搭配方案有哪幾種?
(2)若搭配一個A種造型的成本為1000元,搭配一個乙種造型的成本為1200元,選(1)中那種方案的成本最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育委員統(tǒng)計了全班同學(xué)60秒跳繩的次數(shù),并列出下面的頻數(shù)分布表:

次數(shù)

60≤x<90

90≤x<120

120≤x<150

150≤x<180

180≤x<210

頻數(shù)

16

25

9

7

3


(1)全班有多少同學(xué)?
(2)組距是多少?組數(shù)是多少?
(3)跳繩次數(shù)x在120≤x<180范圍的同學(xué)有多少?占全班同學(xué)的百分之幾?
(4)畫出適當(dāng)?shù)慕y(tǒng)計圖表示上面的信息.

查看答案和解析>>

同步練習(xí)冊答案