如圖,AD是RtΔABC斜邊BC上的高, DE⊥DF,且DE和DF分別交AB、AC于E、F.則嗎?說說你的理由.

∵△ABC中, ∠BAC=90°,∴∠C+DAC=90°,∠B+∠C=90°,∴∠B=∠DAC,∵DE⊥DF,∠EDF=90°,∵BDA=90°,∴∠EDF=∠BDA,∴∠EDF-∠EDA=∠BDA-∠EDA,∴∠BDE=∠ADF,∴△BDE∽△ADF,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是Rt△ABC斜邊BC上的高,DE⊥DF,且DE和DF分別交AB、AC于E、F.則
AF
AD
=
BE
BD
嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD是Rt△ABC的角平分線,AD的垂直平分線EF交CB的延長線于點F,求證:FD2=FB•FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是Rt△ABC的斜邊BC上的高線,要使△ACD的面積是△ABC和△ABD面積的比例中項,請你添加一個適當(dāng)?shù)臈l件:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:AD是Rt△ABC斜邊上中線,BC=10,則AD=
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,AD是Rt△ABC的角平分線,AD的垂直平分線EF交CB的延長線于點F,求證:FD2=FB•FC.

查看答案和解析>>

同步練習(xí)冊答案