精英家教網 > 初中數學 > 題目詳情

x2-4x+m2是一個完全平方式,則m的值是


  1. A.
    2
  2. B.
    -2
  3. C.
    +2和-2
  4. D.
    4
C
分析:先根據乘積二倍項確定出這兩個數,再根據完全平方公式列式即可求出m的值.
解答:∵x2-4x+m2=x2-2×2×x+m2
∴m2=22,
解得m=2或-2.
故選C.
點評:本題主要考查了完全平方式,根據乘積二倍項確定出這兩個數是解題的關鍵,也是難點,熟記完全平方公式對解題非常重要.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

我們知道,對于二次函數y=a(x+m)2+k的圖象,可由函數y=ax2的圖象進行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數y=ax2為“基本函數”,而稱由它平移得到的二次函數y=a(x+m)2+k為“基本函數”y=ax2的“朋友函數”.左右、上下平移的路徑稱為朋友路徑,對應點之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學的函數:二次函數y=ax2,函數y=kx和反比例函數y=
k
x
都可以作為“基本函數”,并進行向左或向右平移一次、再向上或向下平移一次得到相應的“朋友函數”.
如一次函數y=2x-5是基本函數y=2x的朋友函數,由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學經過思考后,為函數y=2x-5又找到了一條朋友路徑為由基本函數y=2x先向
 
,再向下平移7單位,相應的朋友距離為
 

(2)探究二:已知函數y=x2-6x+5,求它的基本函數,朋友路徑,和相應的朋友距離.
(3)探究三:為函數y=
3x+4
x+1
和它的基本函數y=
1
x
,找到朋友路徑,并求相應的朋友距離.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下面的材料:∵ax2+bx+c=0(a≠0)的根為x1=
-b+
b2-4ac
2a
.,x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
,x1x2=
b2-(b2-4ac)
4a2
=
c
a

綜上所述得,設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
b
a
,x1x2=
c
a

請利用這一結論解決下列問題:
(1)若矩形的長和寬是方程4x2-13x+3=0的兩個根,則矩形的周長為
13
2
13
2
,面積為
3
4
3
4

(2)若2+
3
是x2-4x+c=0的一個根,求方程的另一個根及c的值.
(3)直角三角形的斜邊長是5,另兩條直角邊的長分別是x的方程:x2+(2m-1)x+m2+3=0的解,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

不改蠻分式的值.使下列分式的分子與分母均按某一字母降冪排列,并使分子、分母的最高次項的系數都是正數.
(1)
-x2-3
4-x

(2)
x+4
x-3-x2

(3)
-4+m
8m-m2-16

查看答案和解析>>

科目:初中數學 來源:東陽市模擬 題型:解答題

我們知道,對于二次函數y=a(x+m)2+k的圖象,可由函數y=ax2的圖象進行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數y=ax2為“基本函數”,而稱由它平移得到的二次函數y=a(x+m)2+k為“基本函數”y=ax2的“朋友函數”.左右、上下平移的路徑稱為朋友路徑,對應點之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學的函數:二次函數y=ax2,函數y=kx和反比例函數y=
k
x
都可以作為“基本函數”,并進行向左或向右平移一次、再向上或向下平移一次得到相應的“朋友函數”.
如一次函數y=2x-5是基本函數y=2x的朋友函數,由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學經過思考后,為函數y=2x-5又找到了一條朋友路徑為由基本函數y=2x先向______,再向下平移7單位,相應的朋友距離為______.
(2)探究二:已知函數y=x2-6x+5,求它的基本函數,朋友路徑,和相應的朋友距離.
(3)探究三:為函數y=
3x+4
x+1
和它的基本函數y=
1
x
,找到朋友路徑,并求相應的朋友距離.

查看答案和解析>>

同步練習冊答案