【題目】如圖,在直角坐標(biāo)系中,直線y=6-x與雙曲線y=(x>0)的圖象相交于點(diǎn)A,B,設(shè)點(diǎn)A的坐標(biāo)為(m,n),那么以m為長(zhǎng)、n為寬的矩形的面積和周長(zhǎng)分別為( )
A. 4,6 B. 4,12 C. 8,6 D. 8,12
【答案】B
【解析】
此題首先要觀察題目,求的是矩形的面積和周長(zhǎng),首先表示出矩形的面積:mn,正好符合反比例函數(shù)的特點(diǎn),因此根據(jù)點(diǎn)A在反比例函數(shù)的圖象上即可得解;然后求矩形的周長(zhǎng):2(x+y),此時(shí)發(fā)現(xiàn)周長(zhǎng)的表達(dá)式正好符合直線AB的解析式,根據(jù)A點(diǎn)在直線AB的函數(shù)圖象上即可得解.
∵點(diǎn)A(m,n)在y=6-x與雙曲線y= (x>0)的圖象上,
∴n=6-m,n=,
∴m+n=6,mn=4;
∴矩形的面積為:mn=4,矩形的周長(zhǎng)為:2(m+n)=12;
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決樓房之間的擋光問(wèn)題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時(shí)不能擋光. 如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時(shí)陽(yáng)光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請(qǐng)問(wèn)新建樓房最高_____________米. (結(jié)果精確到1米.,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D,E分別是AC,BC邊上的點(diǎn),且AD=CE,連接BD,AE相交于點(diǎn)F.
(1)∠BFE的度數(shù)是多少;
(2)如果,那么等于多少;
(3)如果時(shí),請(qǐng)用含n的式子表示AF,BF的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】晚上,小亮走在大街上發(fā)現(xiàn):當(dāng)他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個(gè)影子成一直線時(shí),自己右邊的影子長(zhǎng)為3m,左邊的影子長(zhǎng)為1.5m,又知自己身高1.80m,兩盞路燈的高相同,兩盞路燈之間的距離為12m,則路燈的高為( )
A. 6.6m B. 6.7m C. 6.8m D. 6.9m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=4.某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某空調(diào)廠的裝配車間計(jì)劃組裝9000臺(tái)空調(diào).
(1)從組裝空調(diào)開(kāi)始,每天組裝的臺(tái)數(shù)m(單位:臺(tái)/天)與生產(chǎn)時(shí)間t(單位:天)之間有怎樣的函數(shù)關(guān)系?
(2)原計(jì)劃用2個(gè)月時(shí)間(每月以30天計(jì)算)完成,由于氣溫提前升高,廠家決定這批空調(diào)提前10天上市,那么原裝配車間每天至少要組裝多少臺(tái)空調(diào)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO中,∠AOB=90°,點(diǎn)A在第一象限,點(diǎn)B在第二象限,且AO:BO=1:2,若經(jīng)過(guò)點(diǎn)A的反比例函數(shù)解析式為y=,則經(jīng)過(guò)點(diǎn)B(x,y)的反比例函數(shù)解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為一圓洞門(mén).工匠在建造過(guò)程中需要一根橫梁AB和兩根對(duì)稱的立柱CE、DF來(lái)支撐,點(diǎn)A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.
(1)求出圓洞門(mén)⊙O的半徑;
(2)求立柱CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c(b,c均為常數(shù))的圖象經(jīng)過(guò)兩點(diǎn)A(2,0),B(0,﹣6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)C(m,0)(m>2)在這個(gè)二次函數(shù)的圖象上,連接AB,BC,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com