【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數(shù)量關(guān)系.
【答案】
(1)證明:∵BE、DE平分∠ABD、∠BDC,
∴∠1= ∠ABD,∠2= ∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁內(nèi)角互補(bǔ),兩直線平行)
(2)解:∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
【解析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根據(jù)同旁內(nèi)角互補(bǔ),可得兩直線平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,將等角代換,即可得出∠3與∠2的數(shù)量關(guān)系.
【考點(diǎn)精析】關(guān)于本題考查的角的平分線和平行線的判定,需要了解從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種型號計算器,A型號計算器的進(jìn)貨價格為每臺30元,B型號計算器的進(jìn)貨價格為每臺40元.商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)分別求商場銷售A,B兩種型號計算器每臺的銷售價格.
(2)商場準(zhǔn)備用不多于2 500元的資金購進(jìn)A、B兩種型號計算器共70臺,問最少需要購進(jìn)A型號的計算器多少臺?【利潤=銷售價格﹣進(jìn)貨價格】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點(diǎn)P落在∠AOB的平分線OC的任意一點(diǎn)上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點(diǎn)E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC,∠ABC=∠ACB。
(1)尺規(guī)作圖:過頂點(diǎn)A作△ABC的角平分線AD;(不寫作法,保留作圖痕跡)
(2)在AD上任取一點(diǎn)E(不與點(diǎn)A、D重合),連結(jié)BE,CE,求證:EB=EC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)八年級共有900名學(xué)生,為了解該校八年級學(xué)生每天做家庭作業(yè)所用的時間,從該校八年級學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行調(diào)查,此次調(diào)查的樣本容量是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富校園文化,舉行初中生書法大賽,決賽設(shè)置了7個獲獎名額,共有13名選手進(jìn)入決賽,選手決賽得分均不相同,小穎知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎,需要知道這13名同學(xué)成績的( )
A.眾數(shù)B.中位數(shù)C.平均數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點(diǎn)坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com