【題目】如圖,已知矩形ABCD與矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(﹣4,4),點(diǎn)F的坐標(biāo)為(2,1),若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)P在線段GC上)是位似中心,則點(diǎn)P的坐標(biāo)為(

A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)

【答案】C
【解析】解:連接BF交y軸于點(diǎn)P,
∵點(diǎn)B的坐標(biāo)為(﹣4,4),點(diǎn)F的坐標(biāo)為(2,1),
∴BC=4,GF=2,CG=3,
∵BC∥GF,
∴△BCP∽△FGP,
= ,即 =
解得,GP=1,
∴OP=2,
∴點(diǎn)P的坐標(biāo)為(0,2),
故選:C.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用位似變換,掌握它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過(guò)同一個(gè)點(diǎn)—位似中心)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,OA=4,且OA,OB長(zhǎng)是關(guān)于x的方程x2﹣mx+12=0的兩實(shí)根,以O(shè)B為直徑的⊙M與AB交于C,連接CM,交x軸于點(diǎn)N,點(diǎn)D為OA的中點(diǎn).

(1)求證:CD是⊙M的切線;
(2)求線段ON的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC上,且AE=CF

1)求證:ABE≌△CBF

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).

(1)求△AHO的周長(zhǎng);
(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程或方程組解應(yīng)用題:

某中學(xué)為迎接校運(yùn)會(huì),籌集7000元購(gòu)買(mǎi)了甲、乙兩種品牌的籃球共30個(gè),其中購(gòu)買(mǎi)甲品牌籃球花費(fèi)3000元,已知甲品牌籃球比乙品牌籃球的單價(jià)高50%,求乙品牌籃球的單價(jià)及個(gè)數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)正六邊形的紙片,該紙片的邊長(zhǎng)為20cm,張萌想用一張圓形紙片將該正六邊形紙片完全覆蓋住,則圓形紙片的直徑不能小于 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC、ACB的平分線相交于點(diǎn)F,過(guò)點(diǎn)FDEBC,ABD,交ACE,那么下列結(jié)論:①△BDF、CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長(zhǎng)為AB+AC;BD=CE.正確的是( )

A. ③④ B. ①②③ C. ①② D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分線AD、BD相交于點(diǎn)D,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.

查看答案和解析>>

同步練習(xí)冊(cè)答案