如圖1所示,在矩形ABCD中,動點P從點B出發(fā),沿BC、CD、DA運動至點A停止,設點P運動的路程為x,△ABP的面積為y,如果y關于x的函數(shù)圖象如圖2所示,那么△ABC的面積是   
【答案】分析:本題需先結合函數(shù)的圖象求出AB、BC的值,即可得出△ABC的面積.
解答:解:∵動點P從點B出發(fā),沿BC、CD、DA運動至點A停止,而當點P運動到點C,D之間時,△ABP的面積不變,
函數(shù)圖象上橫軸表示點P運動的路程,x=4時,y開始不變,說明BC=4,x=9時,接著變化,說明CD=9-4=5,
∴AB=5,BC=4,
∴△ABC的面積是:×4×5=10.
故答案為:10.
點評:本題主要考查了動點問題的函數(shù)圖象,在解題時要能根據(jù)函數(shù)的圖象求出線段的長度從而得出三角形的面積是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1所示,在矩形ABCD中,動點P從點B出發(fā),沿BC、CD、DA運動至點A停止,設點P運動的路程為x,△ABP的面積為y,如果y關于x的函數(shù)圖象如圖2所示,那么△ABC的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

全國第十屆數(shù)學教育方法論暨MM課題實施20周年紀念活動于9月27在無錫市一中拉開帷幕.與會期間全國數(shù)十位老師上了精彩紛呈的展示課,其中青島一位老師的“折紙”課,武漢的裴光亞教授評價是:“栩栩如生,五彩繽紛”.課堂上老師提出這樣一個問題:你能用手中的矩形紙片盡可能大的折出一個菱形嗎?有兩位同學很快折出了各自不同的菱形,如下圖:
精英家教網(wǎng)
(1)如果該矩形紙片的長為4,寬為3,則圖1、圖2兩圖中的菱形面積分別為:
 

(2)這時老師說,這兩位同學折出的菱形都不是最大的,聰明的你能夠想出最大的菱形應該怎樣折出來嗎?如圖3所示:在矩形ABCD中,設AB=3,AD=4,請你在圖中畫出面積最大的菱形的示意圖,標注上適當?shù)淖帜,并求出這個菱形的面積.
(3)借題發(fā)揮:如圖4,在矩形ABCD中,AB=2,AD=3,若折疊該矩形,使得點D與AB邊的中點E重合,折痕交AD于點F,交BC于點G,邊DC折疊后與BC交于點M.試求:△EBM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,在矩形ABCD中,動點P從點B出發(fā),沿矩形的邊由B→C→D→A運動,設點P運動的路程為x,△ABP的面積為y,把y看作x的函數(shù),函數(shù)圖象如圖2所示,則△ABC的面積為( 。
精英家教網(wǎng)
A、10B、16C、18D、32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•豐臺區(qū)一模)將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為
8
5
,
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為______.

查看答案和解析>>

同步練習冊答案