精英家教網(wǎng)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
分析:(1)根據(jù)同角的余角相等得到∠ACE=∠BCD,又夾這個(gè)角的兩邊分別是兩等腰直角三角形的腰,利用SAS即可證明;
(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等可以得到AE=BD,∠EAC=∠B=45°,所以△AED是直角三角形,利用勾股定理即可求出DE長度.
解答:(1)證明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,EC=DC.(2分)
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA,
∠ACB=∠ECD=90°,
∴∠ACE=∠BCD.(3分)
在△ACE和△BCD中
AC=BC
∠ACE=∠BCD
EC=DC
,
∴△ACE≌△BCD(SAS).(5分)

(2)解:又∠BAC=45°
∴∠EAD=∠EAC+∠BAC=90°,
即△EAD是直角三角形(8分)
∴DE=
AE2+AD2
=
122+52
=13.(10分)
點(diǎn)評(píng):本題第一問利用邊角邊定理證明三角形全等,第二問利用全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,∠ABC和∠ACB的平分線相交于F,過F作DE∥BC,交AB于D,交AC于E,
求證:(1)△BDF是等腰三角形
(2)BD+EC=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:重慶市期末題 題型:解答題

如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2010•大田縣)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市大田縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•大田縣)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案