如圖,在△ABC中,D為BC上一點(diǎn),∠1=∠2,∠3=∠4,∠BAC=63°,試求∠DAC,∠ADC的度數(shù).

【答案】分析:由三角形的內(nèi)角和是180°,和三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.
解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,
∴2∠3+∠CAD=2∠1+2∠2+∠BAC-∠1=4∠1+63°-∠1=3∠1+63°=180°,
∴∠1=39°=∠2,∠3=∠4=78°,
∴∠DAC=63°-∠1=63°-39°=24°,∠ADC=∠3=78°.
點(diǎn)評:本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°”這一隱含的條件;以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案