分析 (1)連接OD,由銳角三角函數(shù)得出∠A=60°,證出△OAD是等邊三角形,得出∠ADO=∠AOD=60°,再證明△COD是等邊三角形,得出∠COD=60°=∠ADO,證出OC∥AE,由已知條件得出CE⊥OC,即可得出結(jié)論;
(2)由(1)得:△OAD和△COD是等邊三角形,得出OA=AD=OD=CD=OC,即可證出四邊形AOCD是菱形.
解答 (1)證明:連接OD,如圖所示:
∵tanA=$\sqrt{3}$,
∴∠A=60°,
∵OA=OD,
∴△OAD是等邊三角形,
∴∠ADO=∠AOD=60°,
∵CD∥AB,
∴∠ODC=60°,
∵OC=OD,
∴△COD是等邊三角形,
∴∠COD=60°=∠ADO,
∴OC∥AE,
∵CE⊥AE,
∴CE⊥OC,
∴CE是⊙O的切線;
(2)解:四邊形AOCD是菱形;理由如下:
由(1)得:△OAD和△COD是等邊三角形,
∴OA=AD=OD=CD=OC,
∴四邊形AOCD是菱形.
點(diǎn)評(píng) 本題考查了切線的判定、等邊三角形的判定與性質(zhì)、三角函數(shù)、菱形的判定;熟練掌握切線的判定方法,證明三角形是等邊三角形是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 四個(gè)角相等 | B. | 對(duì)角線互相垂直 | C. | 對(duì)角互補(bǔ) | D. | 對(duì)角線相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com