如圖,已知菱形ABCD中,AE⊥BC于點(diǎn)E.若sinB=,AD=6,則菱形ABCD的面積為( )

A.12
B.
C.24
D.54
【答案】分析:由四邊形ABCD是菱形,即可得AB=BC=AD=6,又由AE⊥BC,sinB=,即可求得AE的長,繼而求得菱形ABCD的面積.
解答:解:∵四邊形ABCD是菱形,
∴AB=BC=AD=6,
∵AE⊥BC,
∴∠AEB=90°,
∵sinB=,
∴sinB==,
∴AE=4,
∴S菱形ABCD=BC•AE=6×4=24.
故選C.
點(diǎn)評:此題考查了菱形的性質(zhì)以及三角函數(shù)的定義.此題難度不大,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的邊長為1.5cm,B,C兩點(diǎn)在扇形AEF的
EF
上,求
BC
的長度及扇形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的周長為16cm,∠ABC=60°,對角線AC和BD相交于點(diǎn)O,求AC和BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,點(diǎn)B、C分別在DE、EF.(B、C分別不與E、F重合)
(1)如圖1,當(dāng)AE平分∠BAC時(shí),
①求證:BD=CF;
②當(dāng)AD=AB時(shí),求∠ABD的度數(shù);
(2)如圖2,當(dāng)AE不平分∠BAC時(shí),若△ADB是一個(gè)等腰三角形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD邊長為6
3
,∠ABC=120°,點(diǎn)P在線段BC延長線上,半徑為r1的圓O1與DC、CP、DP分別相切于點(diǎn)H、F、N,半徑為r2的圓O2與PD延長線、CB延長線和BD分別相切于點(diǎn)M、E、G.
(1)求菱形的面積;
(2)求證:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD為2cm.B、C兩點(diǎn)在以點(diǎn)A為圓心的
EF
上,求
BC
的長度及扇形ABC的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案