(1)如圖1,在△ABC中,點(diǎn)D、E、Q分別在AB、AC、BC上,且DE//BC,AQ交DE于點(diǎn)P,求證:
(2)如圖,△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫(xiě)出MN的長(zhǎng);
②如圖3,求證:MN=DM·EN
(1)證明見(jiàn)解析;(2)①,②證明見(jiàn)解析.
解析試題分析:(1)易證明△ADP∽△ABQ,△ACQ∽△ADP,從而得出.(2)①根據(jù)等腰直角三角形的性質(zhì)和勾股定理,求出BC邊上的高,根據(jù)△ADE∽△ABC,求出正方形DEFG的邊長(zhǎng)。從而,由△AMN∽△AGF和△AMN的MN邊上高,△AGF的GF邊上高,GF=,根據(jù) MN:GF等于高之比即可求出MN. ②可得出△BGD∽△EFC,則DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根據(jù)(1),從而得出結(jié)論.
試題解析:(1)在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ. ∴.
同理在△ACQ中,.
∴.
(2)① .
②∵∠B+∠C=90°,∠CEF+∠C=90,∴∠B=∠CEF.
又∵∠BGD=∠EFC,∴△BGD∽△EFC.∴.∴DG·EF=CF·BG.
又∵DG=GF=EF,∴GF2=CF·BG.
由(1)得 ,∴. ∴MN2=DM·EN.
考點(diǎn):1.相似三角形的判定和性質(zhì);2.等腰直角三角形的性質(zhì);3.勾股定理;4.正方形的性質(zhì);5.等量代換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
為了測(cè)量校園水平地面上一棵不可攀的樹(shù)的高度,學(xué)校數(shù)學(xué)興趣小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如圖所示的測(cè)量方案:把一面很小的鏡子放在離樹(shù)底(B)8.4米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=2.4米,觀察者目高CD=1.6米,則樹(shù)(AB)的高度為 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
梯形ABCD中,AB∥CD,AB=3,CD=8,點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE并延長(zhǎng)交直線AB于點(diǎn)F,若=2,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
△ABC中,D、E分別是邊AB與AC的中點(diǎn),BC=4,下面四個(gè)結(jié)論:①DE=2;②△ADE∽△ABC;③△ADE的面積與△ABC的面積之比為 1:4;④△ADE的周長(zhǎng)與△ABC的周長(zhǎng)之比為 1:4;其中正確的有 .(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在6×8網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,點(diǎn)O和△ABC的頂點(diǎn)均與小正方形的頂點(diǎn)重合.
(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′和△ABC位似,且位似比為1∶2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),AD⊥BC于D,連結(jié)AB、PB、AC,BP分別與AD、AC相交于點(diǎn)E、F.
(1)BE與EF相等嗎?并說(shuō)明理由;
(2)小李通過(guò)操作發(fā)現(xiàn)CF=2AB,請(qǐng)問(wèn)小李的發(fā)現(xiàn)是否正確,若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)寫(xiě)出CF與AB正確的關(guān)系式.
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí)?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時(shí)刻t,使線段PQ恰好把△ABC的周長(zhǎng)和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com